SANTA PAULA GEOLOGIC HAZARD ABATEMENT DISTRICT (GHAD) PLAN OF CONTROL

SANTA PAULA, CALIFORNIA

PREPARED

BY

ENGEO INCORPORATED

PROJECT NO. 7290.200.101

MARCH 10, 2008 REVISED MAY 23, 2008

Project No. **7290.200.101**

March 10, 2008 Revised May 23, 2008

Ms. Tiffany Sukay Comstock Homes 312 12th Street Manhattan Beach, CA 90266

Subject: Santa Paula Geologic Hazard Abatement District (GHAD) Santa Paula, California

GEOLOGIC HAZARD ABATEMENT DISTRICT (GHAD) PLAN OF CONTROL

Dear Ms. Sukay:

ENGEO Incorporated is pleased to present this Santa Paula Geologic Hazard Abatement District (GHAD) Plan of Control.

We are pleased to be of service to you on this project. If you have any questions concerning the contents of our report, please do not hesitate to contact us.

JAL GEO Very truly yours, HARRE ENGEO Incorporated No. 2189 Exp. 8/31/2009 CERTIFIED FOLOGIST

Uri Éliahu. GE

Jeffrey A. Adams, PhD, PE jaa/ue/rc

TABLE OF CONTENTS

Page

I.	AUTHORITY AND SCOPE
II.	BACKGROUND
	Proposed Development
	Open Space
III.	SITE GEOLOGY
	Geologic Units
	Fill
	Colluvium
	Terrace Deposits
	Bedrock - Saugus Formation
	Landslides and Surficial Features
	East Bluff Slopes
	Seismicity
	Faulting
	Groundwater
IV	CFOLOGIC HAZARDS 11
1 .	Slope Instability
	I and slides
	Soil Creen
	Frosion 13
	Debris Flows
	Expansive Soils
	Compressible Terrace Deposits 15
	Seismically Induced Ground Shaking
	Ground Runture
	Ground Shaking
	Ground Shaking.
V.	CRITERIA FOR GHAD RESPONSIBILITY
	Prevention, Mitigation, Abatement and/or Control of Geologic Hazards16
	Exceptions
	Isolated or Remote Slope Instability
	Single Property
	Geologic Hazards Resulting From Negligence of Property Owner17
	Property Not Accepted17

TABLE OF CONTENTS (Continued)

	Geologic Hazard Which Requires Expenditure in Amount Exceeding the Value of the Threatened or Damaged Improvement	.18
VI.	ACCEPTANCE Activation of Assessment Responsibility for GHAD Activities	.19 .19 .19
VII.	GHAD MAINTENANCE AND MONITORING RESPONSIBILITIES	20 .21
VIII.	PRIORITY OF GHAD EXPENDITURES	22
IX.	MAINTENANCE AND MONITORING SCHEDULE	23
X.	RIGHT OF ENTRY	26
XI.	MISCELLANEOUS PROVISIONS	27
SELE(FIGUI APPE) APPE) APPE) APPE) APPE)	 CTED REFERENCES RES NDIX A – GEOBRUGG, Rocco® Rockfall Protection System Maintenance Manual NDIX B - ALBUS-KEEFE AND ASSOCIATES, Supplemental Geotechnical Investigation and Rough Grading Plan Review NDIX C - ALBUS-KEEFE AND ASSOCIATES, Recommendations for Stabilizations Upper Easterly Bluff NDIX D - KANE GEOTECH INC., Santa Paula Debris Flow Investigation NDIX E - ALBUS-KEEFE AND ASSOCIATES, Rough Grading Report for Phase 1 Construction Area NDIX F - CONTECH CONSTRUCTION PRODUCTS, INC., Detention System Maintenance Guide 	s of

I. AUTHORITY AND SCOPE

The Santa Paula Geologic Hazard Abatement District ("GHAD" or "District") is proposed to be formed under authority of Public Resources Code §§ 26500, *et seq.*

Section 26509 of the Public Resources Code requires a Plan of Control, prepared by a State-Certified Engineering Geologist, as a prerequisite to formation of a GHAD. Pursuant to Section 26509, this Plan of Control was prepared by an Engineering Geologist certified pursuant to Section 7822 of the Business and Professions Code and describes, in detail, the geologic hazards, their location, and the areas affected by them. It also provides a plan for the prevention, mitigation, abatement, or control thereof.

As used in this Plan of Control, and as provided in Section 26507, "geologic hazard" means an actual or threatened landslide, land subsidence, soil erosion, earthquake, fault movement, or any other natural or unnatural movement of land or earth.

Property Identification

The GHAD boundary is shown on Figure 1 and incorporated by reference. The legal description of the land to be included within the Ridgeview at Vista Glen GHAD is included in Exhibit A, which is incorporated by reference.

II. BACKGROUND

The initial GHAD jurisdiction includes the Ridgeview at Vista Glen property, consisting of approximately 14.1 acres at the northern terminus of 10th Street, immediately north of the existing Santa Paula Hospital facility in Santa Paula, California. This GHAD will provide for the prevention, mitigation, abatement, and control of geologic hazards including earth movements that could impact this development.

The majority of the proposed District is situated on an elevated hillside terrace located on the southern flank of the east-west trending ridge of Sulphur Mountain, approximately 1.5 miles northwest of the confluence of the Santa Clara River and Santa Paula Creek. The topography within the area of proposed GHAD boundary varies from a relatively flat slope of 10:1 (horizontal:vertical) or flatter on the terrace portion of the site (location of an old avocado orchard) to steeper ascending slopes along the western side of the site (approximately 3:1), and to very steep descending slopes along the eastern and northern portions of the site. Elevations range from approximately 595 feet above mean sea level (msl) at the southern boundary to approximately 720 feet above msl along the western boundary of the District (Albus-Keefe [AKA], 2006; DRC, 2006).

The descending slopes along the northern and eastern sides of the site range from 1:1 to as steep as $\frac{1}{2}$:1 near the upper part of the slope, and decrease to approximately 1:1 to $\frac{1}{2}$:1 on the lower flanks. The slopes at the eastern side (referred to in the referenced reports as the easterly bluff) extend down over a horizontal distance of 260 to 360 feet to the rear of existing single-family homes with a change in elevation of 180 to 200 feet. The slopes at the northern side of the site extend into a narrow east-draining canyon with a runout that is over 600 feet from existing homes at the base of the slope.

The western site boundary lies adjacent to an ascending slope that rises at about 3:1 to the top of a north-south-southwest trending ridge with an elevation of about 800 feet above msl. Several existing homes are located along the eastern flank of this ridge; they are aligned along the southern portion of the western site boundary. The grading plan indicates cuts of up to 24 feet into this slope and the installation of retaining walls or Verdura walls.

Proposed Development

The project development plan includes 75 residential lots, three parks, an underground detention basin, and associated streets (Figure 2). Several retaining walls and Verdura walls will be constructed at the site, reaching a maximum height of 21 feet. Verdura walls are segmental wall units that are used in conjunction with geogrid to help armor an engineered fill slope. Cut and fill slopes are proposed at a maximum ratio of 2:1 to heights of 35 feet or less. Fills over cut slopes are proposed to a maximum height of approximately 43 feet. Additionally, three GEOBRUGG screen walls will be installed at the base of the debris flow-prone areas.

Open Space

It is anticipated that title for the open space will pass to the GHAD. As the open space within and immediately adjacent to the proposed development and within the tract boundary is an amenity that benefits all of the property owners within the development, the funding of the maintenance of the open space will be shared by all current and future property owners within the GHAD's boundaries. Oversight of the actual physical maintenance responsibility for parcels of open space will pass to the GHAD.

The GHAD will assume responsibilities that relate to its position as a GHAD and other duties as a responsible land owner within GHAD-owned open space areas as shown in Figure 2. The

GHAD is charged with responsibilities that relate to the prevention, mitigation, abatement, or control of geologic hazards, which includes the maintenance of facilities that enhance geologic as well as hydrogeologic stability, such as drainage facilities and associated improvements. These duties may include the monitoring and maintenance of drainage facilities which, if subject to improper care, could result in decreased slope stability, the prime concern of the GHAD. As currently planned, the drainage facilities to be maintained by the GHAD include Integrated Management Practice (IMP) water quality treatment facilities, the detention basin, concrete-lined drainage ditches, and open space storm drain facilities.

The GHAD intends to mitigate or abate landslide or erosion hazards that could directly affect improved, developed, and accepted properties (as defined in Section VI) within the project, in accordance with Section VII. The GHAD will also perform maintenance of water control and conveyance facilities in open space areas and may assume other peripherally related open space responsibilities in GHAD-owned open space areas, such as erosion control, retaining and screen wall maintenance, mowing, trail maintenance, and selected other maintenance associated with open space.

III. SITE GEOLOGY

The following section is a summary of geologic conditions at the site as described by AKA in the 2006 and 2007 reports, the latter of which was produced following rough grading of the site and preparation of building pads for Phase 1 development in the southeastern portion of the site. The relevant references are presented in their entirety in Appendices B through E to provide more detail regarding geologic conditions.

Geologic Units

The site is situated on an elevated alluvial terrace associated with the ancestral Santa Paula Creek. The terrace was covered with varying amounts of non-engineered fill associated with past agricultural activities. Beneath the fill, the material was described as "Older colluvium" – a finer grained and more weathered material than the underlying terrace deposits. Older colluvium is labeled Q_{colo} on the rough grading map of the AKA October 2007 report. Underlying the colluvium are Late Pleistocene-age non-marine terrace deposits, which, in turn unconformably overlie Saugus Formation bedrock (Dibblee, 1992). Each of these units is described more completely below.

<u>Fill.</u> Non-engineered fill associated with previous agricultural activities was reported throughout much of the site during the initial exploration (AKA, May 2006). Fill encountered during field investigations typically consisted of soft to dense combinations of clay, silt, sand, and rock fragments ranging from a few inches to 4 feet in thickness. These materials were reportedly completely removed during preliminary site grading in the Fall of 2007 (AKA, 2007).

<u>Colluvium.</u> Colluvial deposits were mapped over nearly the entire site, with thicker accumulations observed within drainage swales of the easterly descending slope. Older

colluvium (labeled Q_{colo} on the rough grading map) underlies the majority of the relatively level portions of the site. These deposits typically consist of silt, clayey silt, sandy silt, silty clay, and sandy clay. During grading, the upper 5 to 7 feet of weathered material were removed to expose competent older colluvium prior to placement of engineered fill (AKA, 2007).

<u>Terrace Deposits.</u> Underlying the colluvium, Late Pleistocene-age stream terrace deposits (Qt) were mapped across the flatter portion of the site during excavation for the rough grading (AKA, 2007). Terrace deposit materials typically consist of poorly to locally well-stratified gravels, cobbles, and boulders in a matrix of clayey sand, silty sand, and sand. These materials were reportedly moist and dense to very dense. During the excavation of the keyway along the easterly bluff, the AKA Geologist observed that the base of the terrace deposits was generally sloping down slightly to the southeast out of the slope face. AKA also noted some local scour features at the base of the unit, particularly where the underlying bedrock unit was composed of granular materials.

<u>Bedrock - Saugus Formation</u>. The Plio-Pleistocene-age Saugus Formation underlies the entire project area. Even though this formation is only slightly older than the nearly flat-lying terrace deposits, it is a tilted and folded sequence of non-marine sediments comprising massive to thinly bedded clayey siltstone, sandy siltstone, silty sandstone, sandstone, and conglomerate interbeds, generally 1 foot to 6 feet in thickness with thin clay seams, typically ¹/₄-inch thick or less. The bedrock units were reportedly observed to be light brown, reddish-brown, pale olive-gray to olive-brown in color, soft to moderately hard, damp to moist, slightly to moderately weathered, and locally contained some calcium carbonate mineralization along joints. A number of clay seams were described as appearing to be tectonically sheared, polished, and locally striated in the down dip direction. AKA attributed these features to flexural slip along bedding planes during rapid uplift and folding of the bedrock in the region.

Bedding orientation of the bedrock was explored in the backcut and exploratory trench excavated during the Phase 1 east bluff stabilization (AKA, 2007). Bedding plane surfaces between sandstone and siltstone units were the most useful for determining strike and dip. The orientation of these bedding planes was N63°E \pm 20°, dipping 48° \pm 11° to the southeast. Joints exposed in the large diameter boreholes, in the keyway backcut, and in the exploratory trench were observed to be high-angle, discontinuous, non-planar, tight, and lined with calcium carbonate and/or iron oxide staining. Joint attitudes measured in the exploratory trench along the bluff top were oriented generally north-south and northwest-southeast with moderate (mainly to the east) to vertical dip angles (AKA, 2006 & 2007).

Landslides and Surficial Features

East Bluff Slopes. The California Geological Survey has placed the easterly descending natural slope within a seismically induced landslide hazard zone in accordance with the Seismic Hazards Mapping Act (CGS, 2002). No deep-seated landslides were identified by AKA within or immediately adjacent the site; however, localized surficial failures have occurred within over-steepened portions of the eastern slopes and similar events are anticipated to occur over time within the steep terrain.

Historical debris flows and surficial failures have been reported within the swales of the east bluff slope by local residents and city officials. Apparently the historical debris flows originated within the natural drainage swales and locally inundated city streets as well as some private residential properties with muddy runoff. According to AKA, some surficial slope failures have also occurred near the base of the eastern slopes as a result of non-engineered over-steepened construction excavations created by homeowners.

Based on observations of the eastern bluff, AKA and Kane (2007) have identified those portions within the project boundaries that are susceptible to future surficial instabilities. They consider the entire area, except for the areas identified as natural drainage swales (chutes), as posing low risk to down-slope properties. AKA anticipates that surficial failures will generally result in isolated failures that move short distances. These mobilized earth materials would likely migrate down-slope over extended periods of time through the natural process of erosion and creep without directly impacting downhill properties. Surficial failures within and adjacent the natural drainage swales are anticipated to continue to generate debris flows during periods of prolonged rainfall that could impact downhill properties. This adverse condition can be mitigated through the implementation of debris barrier systems within the natural drainage swales (Kane, 2007).

Seismicity

The closest Type A fault is the San Andreas fault, located approximately 32 miles northeast of the site. The closest Type B fault is the onshore segment of the Oak Ridge Fault, located approximately 1.7 miles southeast of the site. The San Cayetano Fault is 4 miles northeast of site. AKA performed a deterministic analysis to estimate peak horizontal ground acceleration (PHGA) for the site. The largest estimated mean PHGA is 0.64g with a standard deviation of 0.43g, corresponding to a 7.0 moment magnitude event along the onshore segment of the Oak Ridge Fault (AKA, 2006).

<u>Faulting.</u> The site is not located within an Alquist-Priolo Earthquake Zone (CGS, 1998 & 1999). Alquist-Priolo Earthquake Zones are specified zones that delineate areas of known active faults, as defined by the State of California. Several active fault zones have been designated by the State north and south of the site. The closest known fault zones are located approximately 1.5 miles or more northeast of the site and include the Orcutt, Timber Canyon and San Cayetano,

and a few unnamed faults. Other known fault zones located greater distances to the southeast and southwest of the site include the Oak Ridge and Ventura faults (Dibblee 1990 & 1992).

The San Cayetano and Oak Ridge faults located northeast and southeast of the site, respectively, are considered the most significant of the mentioned faults. The San Cayetano fault to the north is an active north-dipping reverse fault that trends roughly east-west. Studies indicate that this fault displaces Tertiary and Quaternary rocks with as much as 9 km of stratigraphic separation (Rockwell, 1988). The Oak Ridge fault to the south is an active, mostly south-dipping, reverse fault that trends to the northeast along the south side of the Santa Clara River Valley (Leighton, 2007). The 1994 Northridge earthquake is believed to have occurred on a continuation of the Oak Ridge fault system (Yeats & Huftile, 1995).

Previous subsurface investigations for the site, geologic mapping during rough grading, review of geologic literature and review of topographic expression for the site and nearby vicinity have not found evidence of active faulting within or immediately adjacent to the site. Furthermore, there are no known active fault zones that project directly towards or through the site.

AKA (2007) observed bedding-plane reverse faults in at least two areas of the site during rough grading. To evaluate the relative age of fault activity, AKA excavated exploratory trenches roughly parallel to the fault traces to expose several vertical feet of bedrock overlain by terrace deposits and/or older colluvial soils. Dr. Thomas Rockwell was contracted by AKA to visit the site and conduct an independent evaluation of the fault features. Dr. Rockwell concluded that the bedding plane thrusts exposed on the Santa Paula terrace are inactive and should not be considered a constraint to development based on the following lines of evidence: (1) there is no scarp or lineament that can be identified in aerial photography of the site, nor is there any known active bedding plane fault that projects towards or through the site; (2) the fault cuts a basal gravel deposit, but does not cut the soil developed through the gravel; and (3) the fault does not

penetrate or offset the overlying colluvial deposits which are capped by a late Pleistocene soil. These three observations all support the conclusion that the faults are inactive in the Holocene time frame.

Groundwater

Static groundwater was not encountered during the 2006 AKA field exploration. AKA did report slight seepage in one boring at a depth of 53.5 feet below ground surface. Additionally, perched groundwater was encountered at a bedrock contact ranging in depth between 20 and 28 feet below the ground surface in four additional borings. Based on available publications and reports, the historic high groundwater level is reported to be approximately 40 feet below the ground surface in the lower Santa Paula Creek Valley; approximately 200 feet below the site (AKA, 2006).

IV. GEOLOGIC HAZARDS

The following geologic hazards were identified for the site in the previous site studies and are expected to remain to some extent after site grading has been completed.

- Slope instability
- Expansive soils
- Compressible terrace deposits
- Seismically induced ground shaking

Slope Instability

Slope stability is the GHAD's prime geotechnical concern at this site. Slope instability is an important consideration for hillside projects throughout the Southern California area, and this site has slope-related geotechnical issues typical of many other similar hillside sites. Future stability depends on numerous factors, including changes in the occurrence of natural or artificial groundwater, future grading, and earthquake ground shaking.

This section describes several types of slope instability that are within the GHAD's responsibility, subject to the provisions of Sections VI and VII.

Landslides. Landslides are a common geologic phenomenon and are part of the process of mass wasting. Weathered or fractured bedrock and soil are transported downslope over geologic time as a result of gravitational and hydrostatic forces. Landslides include a variety of morphologies and are further defined by type of materials, wetness, and mode of movement. They can consist of mass movements of earth materials that are primarily intact and occur along discrete shear surfaces, or they can consist of flowing earth materials. In the case of movement of coherent blocks, the slip or shear surfaces can be rotational (conchoidal or concave), such as for earth

slumps, or planar, as for translational earth slide or bedrock block glides. Most landslides are actually "complex landslides", sliding, falling and flowing with more than one type of movement and/or material.

Landslides and earth movement in the Saugus Formation are typically rotational slumps and earthflows but can also include translational landslides with a basal contact along weak bedding planes or discontinuities, along a component of the true dip, or as wedge-type failures formed by intersecting planes of weakness (FUGRO, 2007). Depth of movement may exceed 25 feet below the ground surface (FUGRO, 2007). The orientation of Saugus Formation beds at the site is such that the down-dip direction does not intersect the slope face and, therefore, is less likely to fail due to adverse dip conditions. Mapped joints were nearly vertical or dipped more steeply than the slope face. As with the bedding, this orientation is favorable for stability of the bedrock along the easterly bluff.

Mass movements involving soil and colluvium are generally in the form of an earthflow or a debris flow. The sources of these features are confined to the upper 3- to 5-foot-thick clayey soil mantle. In the winter rainy season, earthflows can typically move at a rate of several feet per day. Debris flows are much faster due to their higher water content. Kane (2007) estimated velocities of 2 to 6 meters per second for the design of debris flow mitigative measures.

AKA (2006) identified the upper portion of the easterly bluff of the site as having a factor of safety of less than 1.5 against gross failure by landslide. They recommended excavating this slope, installing drainage, and rebuilding the slope with geogrid to reinforce the slope. In the Fall of 2007, this work was done on a portion of the bluff at the rear of Lots 21 through 25 and 28 through 30.

The keyway back cut was formed at a 1:1 (horizontal:vertical) slope with a 25- to 35-foot-wide keyway cut at least 2 feet into competent rock. A backdrain was installed at the heel of the keyway (AKA, 2007) and the slope was reconstructed with select granular material and geogrid reinforcement. As described in the Rough Grading Report by AKA (2007), Mirafi 10XT grids were installed from the slope face into the slope extending a length equal to the height of the slope. Intermediate geogrid layers (Mirafi 2XT) were placed between layers of the Mirafi 10XT for slope facing stability. Cohesive on-site soils were placed on the outer 2 to 4 feet of the slope face to mitigate piping of granular soils through the geogrid. Verdura wall blocks were also installed every 2.5 feet to anchor the geogrid and to help armor the slope (AKA, 2007).

<u>Soil Creep.</u> Soil creep is the slow, often imperceptible, deformation of slope materials under low stress levels, which normally affects the shallow portion of the slopes, but can be deep seated where a weak zone of soil or bedrock exists. It results from gravitational and seepage forces, and may be indicative of conditions favorable for landsliding. Creep can be caused by wetting and drying of clays, by solution and crystallization of salts, by the growth of roots, by burrowing animals and by down-slope movement of saturated ground. Colluvium refers to the mantle of loose soil and weathered bedrock debris that moves down hillsides by creep-related processes. Areas susceptible to soil creep are shown on Figure 2 in yellow.

<u>Erosion</u>. The GHAD is also concerned with erosion and sedimentation in open space or affecting developed lots or improvements, subject to the provisions of Sections VI and VII. Erosion is defined as the process by which earth materials are loosened and removed by running water on the ground surface or in the subsurface. Sedimentation is the consequent depositing or settling of soil or rock particles from a state of suspension in a liquid.

Undeveloped hilly terrain either in a natural condition or particularly on cut or fill slopes can be subject to erosion. Landslide deposits, which are sometimes in a loosened condition, are

particularly prone to erosion. Earth flow-, debris flow- and mud flow-type landslides typically have an area of deposition or accumulation (sedimentation area) at their base. Graded slopes in the GHAD, particularly those in excess of 20 feet in vertical height and those not sufficiently vegetated, can be subject to erosion and, therefore, can become a source of transported sediment. Slopes with higher susceptibility to erosion are shown in blue on Figure 2.

<u>Debris Flows.</u> Three areas have been identified as being prone to debris flows (AKA, 2007; Kane, 2007). The debris flow areas are located down-slope of the easterly bluff, below Lots 23 through 25, 28, 29, and 30 (orange areas on Figure 2). The Kane report (2007) lists the characteristics of the debris flow chutes as follows:

Debris Flow Chute	Soil	Area (ft ²)	Total Volume (ft ³)
А	Silt w/Cobbles	5,032	15,096
В	Silt w/Cobbles	10,793	32,379
C	Silt w/Cobbles	5,705	17,115

To mitigate the risk posed by the debris flows to adjoining properties, GEOBRUGG debris flow screen walls designed by Kane and Associates (2007) will be installed at the locations indicated as green dashed lines on Figure 2.

Expansive Soils

Near-surface soil and clayey bedrock at the site could exhibit a moderate potential for expansion. These potentially expansive soils could impact the planned site development. Expansive soils shrink and swell as a result of moisture changes. This can cause heaving and cracking of slabs-on-grade, pavements, and structures founded on shallow foundations. The potential for expansive soils has been identified in previous reports for the site. Shrink and swell of expansive soils on slopes contributes to the mechanism of creep, which can result in shallow slope instability.

Compressible Terrace Deposits

AKA (2007) indicates that some terrace deposits are expected to undergo settlement due to the weight of proposed overlying fills. Total settlements and differential settlements of 2¹/₂ inches and ¹/₂ inch over 30 feet, respectively, can be expected in localized areas. The majority of the anticipated settlement will occur during loading by the fill (AKA, 2007).

Seismically Induced Ground Shaking

As identified in the geotechnical report (AKA, (2006), an earthquake of moderate to high magnitude generated within the Southern California region could cause considerable ground shaking at the site, similar to that which has occurred in the past. It appears that seismic slope stability has been considered in the remedial grading plans; however, seismically generated slope failures could occur within the oversteepened portions of the natural easterly slope. Measures have been taken to mitigate this risk, such as the rebuilt upper portion of the easterly bluff and the installation of the GEOBRUGG debris flow control systems.

<u>Ground Rupture.</u> No known active faults are known to project through the site nor does the site lie within the bounds of an "Earthquake Fault Zone" as defined by the State of California in the Alquist-Priolo Earthquake Fault Zoning Act. The potential for ground rupture due to an earthquake beneath the site is considered very small.

<u>Ground Shaking.</u> The site is in a seismically active area that has historically been affected by generally moderate to occasionally high levels of ground motion. The site lies in relative close proximity to several active faults; therefore, during the life of the proposed development, the property will probably experience similar moderate to occasionally high ground shaking from these fault zones, as well as some background shaking from other seismically active areas of the southern California region.

V. CRITERIA FOR GHAD RESPONSIBILITY

Prevention, Mitigation, Abatement and/or Control of Geologic Hazards

Subject to the following exceptions, the primary mission of the GHAD is the prevention, mitigation, abatement and control of geologic hazards within its jurisdictional boundaries that have damaged, or that pose a significant threat of damage to site improvements within developed areas. As used herein, the term "site improvements" means buildings and outbuildings, roads, sidewalks, improved paths, utilities, improved trails, swimming pools, tennis courts, gazebos, cabanas, geologic stabilization features, or similar improvements.

Exceptions

The intent of this Plan of Control is not to extend the GHAD's responsibilities to every potential situation of slope instability. Specifically, the following are excluded from the GHAD's responsibilities.

Isolated or Remote Slope Instability

The GHAD does not have responsibility to monitor, abate, mitigate or control slope instability that does not involve damage to or pose a significant threat to damage site improvements.

Single Property

The GHAD will not prevent, mitigate, abate or control geologic hazards which are limited in area to a single parcel of property unless the geologic hazard has damaged, or poses a significant threat of damage to site improvements located on other property within the GHAD jurisdictional

boundaries. As used herein, the term "site improvements" means buildings, roads, sidewalks, utilities, improved trails, swimming pools, tennis courts, gazebos, cabanas, geologic stabilization features, or similar improvements. This exclusion does not apply to geologic hazards existing on recreational property, and open space property within the GHAD-owned property.

Geologic Hazards Resulting From Negligence of Property Owner

The GHAD may decline to prevent, mitigate, abate or control geologic hazards which occurred or resulted from any negligence of the homeowner and/or the homeowner's contractors, agents or employees in developing, investigating, grading, constructing, maintaining or performing or not performing any post-development work on the subject property.

Property Not Accepted

The GHAD does not have responsibility to repair damaged site improvements which are situated on a parcel of real property that the GHAD has not accepted in accordance with Section VI, below. The GHAD, however, may monitor, abate, mitigate or control slope instability on a parcel of real property which (1) the GHAD has not accepted in accordance with Section VI, below, and (2) that is not excluded from GHAD responsibility by Paragraphs 1, 2 and 3; provided that GHAD responsibility on such parcel is limited to the extent necessary to address damage or a significant threat to damage site improvements which are within a parcel of real property which the GHAD has accepted in accordance with Section VI, below.

<u>Geologic Hazard Which Requires Expenditure in Amount Exceeding the Value of the</u> <u>Threatened or Damaged Improvement</u>

The GHAD may elect not to prevent, mitigate, abate or control a geologic hazard where the anticipated expenditure required to be funded by the GHAD to prevent, mitigate, abate or control the geologic hazard will exceed the value of the structure(s) and site improvement(s) threatened with damage or loss.

VI. ACCEPTANCE

Activation of Assessment

Subject to applicable law, an annual assessment must be promptly implemented on all residential parcels in the GHAD. The assessment will be levied by the GHAD on each individual residential parcel beginning the first fiscal year after the City of Santa Paula issues a building permit for that parcel.

Responsibility for GHAD Activities

The party that, on the date that the Final Map within the boundaries of the GHAD is recorded by the City of Santa Paula, owns the developable parcels shown on that Final Map has the responsibility to perform all the activities of the GHAD on property within that Final Map. Following a period of at least 3 years after the first residential building permit is issued by the City of Santa Paula, or 1 year after the completion of the initial mass grading (as defined by the City-approved grading plans), whichever is later, the suitability of transfer of GHAD-related shall be determined by the GHAD Manager. If determined to be appropriate, maintenance responsibility shall be transferred to the GHAD. This transfer date may be extended at the sole discretion of the project developer provided that the assessments continue to be levied during the extension period and that notice of such extension is delivered to the GHAD General Manager at least 30 days before the transfer date. The petitioners for formation of the GHAD intend that the approximately 4-year period between the levying of the GHAD assessment and the GHAD becoming responsible to perform activities on property within each Final Map will allow the District to accumulate reserve funds without incurring significant expenses. Such reserve funds are needed to address periodic major events which cannot be funded from annual revenues.

VII. GHAD MAINTENANCE AND MONITORING RESPONSIBILITIES

The GHAD is responsible for maintaining geologic stabilization features (e.g. ditches, benches, walls) in the common open space and the unimproved areas including hillside slopes extending uphill from debris benches and outside of the private lot boundaries. The GHAD's maintenance responsibilities include prevention, abatement, vegetation control, and control of landslide and erosion hazards within the subdivision open space and hillsides exclusively within the GHAD Boundary, as provided in Section VI. Adjacent slopes, open space, and improvements outside of the GHAD boundary are not maintained by or the responsibility of the GHAD.

General maintenance of the surface drainage improvements in the open space and on the hillsides, such as the concrete V-ditches, will be the GHAD's responsibility. The GHAD is also responsible for general maintenance of the detention basin, storm drain inlets and outlets in open space and subdrain outlets. Potential geologic hazards such as landslides and slope erosion within the open space are the GHAD's responsibility. The GHAD has the following maintenance responsibilities:

- Trail maintenance.
- Inspection and maintenance of CDS water quality treatment unit and underground detention system.
- Inspection and maintenance of concrete-lined drainage ditches in open space area.
- Subdrains.
- Storm drain inlets, outfalls and pipelines within the open space area.
- Slopes.
- Vegetation control within the open space.

- Maintenance of retaining walls and GEOBRUGG screen walls.
- Splash walls.

Geotechnical Techniques for Mitigation of Landslide and Erosion Hazards

The techniques which may be employed by the GHAD to prevent, mitigate, abate, or control geologic hazards include, but are not limited to, the following.

- A. Removal of the unstable earth mass.
- B. Stabilization (either partial or total) of the landslide by removal and replacement with compacted, drained fill.
- C. Construction of structures to retain or divert landslide material or sediment.
- D. Construction of erosion control devices such as gabions, riprap, geotextiles, or lined ditches.
- E. Placement of drained engineered buttress fill.
- F. Placement of subsurface drainage devices (e.g. underdrains, or horizontal drilled drains).
- G. Slope correction (e.g. gradient change, biotechnical stabilization, slope trimming or contouring).
- H. Construction of additional surface ditches and/or detention basins, silt fences, sediment traps, or backfill or erosion channels.

Potential landslide and erosion hazards can often be mitigated best by controlling soil saturation and water runoff and by maintaining the surface and subsurface drainage system. Maintenance shall be provided for lined surface drainage ditches and drainage terraces including debris benches or drop inlets. Maintenance of the open space, including the clearing of fire trails, will be the responsibility of the GHAD. The GHAD also shall monitor the use of the open space by other entities.

VIII. PRIORITY OF GHAD EXPENDITURES

Emergency response and scheduled repair expenditures by the GHAD may be prioritized by the General Manager, based upon available funds and the approved operating budget. When available funds are insufficient to undertake all of the identified remedial and preventive stabilization measures, the expenditures must be prioritized in accordance with the GHAD Board of Director's directions or as follows in descending order of priority:

- A. Prevention, mitigation, abatement or control of geologic hazards that have either damaged or pose a significant threat of damage to residences, critical underground utilities or paved streets.
- B. Prevention, mitigation, abatement or control of geologic hazards which have either damaged or pose a significant threat of damage to ancillary structures, including but not limited to detention basins.
- C. Prevention, mitigation, abatement or control of geologic hazards which have either damaged or pose a significant threat of damage to open space amenities.
- D. Prevention, mitigation, abatement or control of geologic hazards which have either damaged or pose a significant threat of damage limited to loss of landscaping or other similar non-essential amenities.
- E. Prevention, mitigation, abatement or control of geologic hazards existing entirely on open space property and which have neither damaged nor pose a significant threat of damage to any site improvements.

IX. MAINTENANCE AND MONITORING SCHEDULE

Geologic features and GHAD maintained facilities should be inspected by the GHAD General Manager's designees as presented below. The site inspections should be undertaken at appropriate intervals as determined by the GHAD General Manager using supporting documents prepared for the site and its improvements. The GHAD budget should provide for four or more inspections in years of heavy rainfall. Generally, the inspections should take place in October, before the first significant rainfall; mid-winter, as necessary during heavy rainfall years (cumulative rainfall exceeding the historic average); and in early April at the end of the rainy season. The frequency of the inspections should increase, depending upon the intensity and recurrence of rainfall. Site inspections should increase sufficiently to provide for mitigation of potential hazards. Additionally, site inspections should be performed following moderate to significant seismic events to evaluate potential damage or displacement to geologic facilities or GHAD-maintained facilities related to ground shaking.

The GHAD should obtain copies of geologic or geotechnical exploration reports related to site development and keep these reports on file in the records of the GHAD. In addition, copies of any earthwork-related testing and observation reports that will be finalized at the completion of grading, when as-built drawings are available, must be provided to the GHAD and maintained as part of the GHAD records.

Following are guidelines for a monitoring plan. The actual timing, scope, frequency and other details regarding such maintenance, inspection and similar activities shall be at the discretion of the GHAD General Manager.

• The Engineer and/or Geologist retained by the District should carry out an inspection of lined surface ditches at least twice a year. One inspection should be in the fall prior to the onset of winter rains. The inspection shall check for sedimentation and cracking or shifting of the

concrete-lined ditches. Repairs and maintenance, as needed, should be undertaken including removal of excess silt or sediment in ditches and patching or replacement of cracked or broken ditches, prior to the beginning of the next rainy season.

- Subsurface drain outlets and horizontal drilled drain outlets, if any, should be checked. Water flowing from these outlets should be measured and recorded during each inspection. The inspections should take place at least twice annually, preferably in the fall and spring. Any suspicious interruption in flow should signal a need to unplug or clean the affected drain. If included, animal/rodent screens and covers should be checked and replaced as necessary.
- Retaining walls, splash walls and GEOBRUGG screen walls should be inspected as part of the site monitoring program. At a minimum, repairs and maintenance should be performed according to the manufacturer's recommendations. Recommendations for the proposed GEOBRUGG products have been included in Appendix A. During the twice-yearly scheduled site monitoring events any barriers should be viewed for debris or larger rocks against the barrier and for sagging ropes. In addition, the braking elements and wire rope clips should be checked. During repairs and maintenance, the GEOBRUGG walls shall be accessed from the top of the descending slope; i.e., from adjacent properties within the GHAD boundary. In case of emergency situations in which access from adjacent properties outside of the boundary, provided express permission to enter these properties is granted by the landowners. Two properties in particular that would likely provide suitable emergency access include Lot 6 within the Harvey Tract (at the end of Harvey Drive) and Parcel A, accessible at the end of Cadway Street. Procedures to secure Right-of-Entry for properties within the GHAD are presented in Section X.
- Inlets, outfalls, or trash racks, if used, must be kept free of debris and spillways maintained. It is anticipated that initially at least once every 2 years, cleanup of vegetation and removal of silt would be in order. Attention should be given to plantings or other obstructions which may interfere with access by power equipment.
- The underground detention basin and CDS water quality treatment unit should be checked and/or serviced as part of the site monitoring program. At a minimum, repairs and maintenance should be performed according to the manufacturer's recommendations. A maintenance guide is presented in Appendix F.

- The trails should be inspected on an annual basis. Positive drainage should be maintained. Depressions, rutting, and other surface expressions that could collect and allow water to infiltrate into the subsurface should be repaired. Additionally, ground cover along the trails should be maintained to allow for intended trail performance.
- An annual inspection of slopes and vegetative cover shall be made by the Engineer and/or Engineering Geologist to assess the effectiveness of the preventive maintenance program and to make recommendations as to which landslide or erosion measures should be undertaken in the next fiscal year. Any appropriate site-specific study of landslide or erosion conditions shall be determined at that time. Consultants, if necessary, will be retained to undertake the needed studies. An annual inspection report to the GHAD shall be prepared by the District Engineer and/or Engineering Geologist.

X. RIGHT OF ENTRY

GHAD officers, employees, consultants, contractors, agents, and representatives shall have the right to enter upon all lands within the GHAD's jurisdiction, as shown on Figure 1, which is incorporated by reference, for the purpose of performing the activities described in this Plan of Control. Such activities include, without limitation: (1) the inspection, maintenance and monitoring of site improvements including detention, water quality and sedimentation basins, maintenance roads, deflection walls, drainage ditches, storm drains, outfalls and pipelines; (2) the monitoring, maintenance and repair of slopes, including repaired or partially repaired landslides; and (3) the management of erosion and geologic hazards within the open space areas shown on Figure 1. Should the GHAD need to access private residential lots to fulfill its duties under the Plan of Control, the GHAD endeavors to provide the affected landowner and/or resident with 72 hours advanced notice unless, in the reasonable judgment of the GHAD, an emergency situation exists which makes immediate access necessary to protect the public health and safety, in which case no advance notice is required, but the GHAD must inform the landowner and/or resident as soon as reasonably possible.

The foregoing right-of-entry and indemnity provision must be recorded in the chain of title for all residential parcels and common area lots, and it shall be included in all Covenants, Conditions and Restrictions (CC&Rs) and homebuyer disclosure statements prepared for parcels within the District boundary.

XI. MISCELLANEOUS PROVISIONS

The GHAD may, in accordance with applicable law, expand its jurisdictional boundaries as depicted in attached Exhibit A, which is incorporated by reference, to include other real property that requires geologic hazard abatement. Nothing in this Plan is intended to, nor will it, limit the GHAD's ability to take such action either upon request by a developer or upon the motion of the Board of Directors.

SELECTED REFERENCES

- Albus-Keefe and Associates, Inc. (AKA); Foundation Design Recommendations for Retaining and Screen Walls, Santa Paula, California; April 17, 2006; Project No. 1489.00.
- AKA; Supplemental Geotechnical Investigation and Rough Grading Plan Review, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, Santa Paula, California; May 3, 2006; Project No. 1489.00.
- AKA; Recommendations for Stabilizations of Upper Easterly Bluff, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, Santa Paula, California; August 31, 2006; Project No. 1489.00.
- AKA; Rough Grading Report for Phase 1 Construction Area, Lots 26 through 35 and 44 through 50, Associated Streets and Slopes, Tract 5606, Santa Paula, California; October 23, 2007; Project No. 1489.00.
- California Geological Survey, 2002, State of California Seismic Hazard Zones, Santa Paula Quadrangle.
- Dibblee, T. W., Jr., 1990, Geologic Map of the Santa Paula Peak Quadrangle, Ventura County, California; DF-26.
- Dibblee, T. W., Jr., 1992, Geologic Map of the Santa Paula Quadrangle, Ventura County, California; DF-41.
- DRC; Tentative Map, Tract 5606–Ridgeview at Vista Glen, Santa Paula, California; May 25, 2005; Sheet 1.
- DRC; Mass Grading Plans, Tract 5606–Ridgeview at Vista Glen, Santa Paula, California; April 10, 2006; Sheets 1-16.
- FUGRO West, Inc.; Review of GHAD by ENGEO Inc. for Comstock Residential Development, Western Terminus of 10th Street, Santa Paula, California; October 2, 2007; Project No. 3322.010.01.
- Kane GeoTech Inc.; Santa Paula Debris Flow Investigation, Ventura County, California; July 3, 2007; Project No. GT06-24.
- Land America Lawyers Title; Preliminary Title Report, Tenth Street, Santa Paula, California; December 14, 2005.

SELECTED REFERENCES (Continued)

- Leighton & Associates, 2007, Preliminary Geotechnical Investigation Report for the East Area 1 Specific Plan, Santa Paula Area of Unincorporated Ventura County, California; April 2007.
- Rockwell, Thomas, 1988, Neotectonics of the San Cayetano Fault, Transverse Ranges, California, GSA Bulletin; April 1988; v. 100; no. 4; p. 500-513.
- USGS; Topographic Map, 7.5-Minute Series, Santa Paula Peak Quadrangle, Ventura County, California; 1951, Photorevised 1988.
- USGS; Topographic Map, 7.5-Minute Series, Santa Paula Quadrangle, Ventura County, California; 1951, Photorevised 1967.
- Yeats, R.S., and G.J. Huftile, 1995, The Oak Ridge fault system and the 1994 Northridge earthquake; Nature v. 373, p. 418-420.

LIST OF FIGURES

Figure 1	GHAD Boundary Map
Figure 2	Site Map with GHAD Boundary and Geologic Hazards
Exhibit A	Legal Description

ORIGINAL FIGURE PRINTED IN COLOR

APPROXIMATE LOCATION OF NATURAL SLOPE AREAS PRONE TO SURFICIAL INSTABILITY

APPROXIMATE LOCATION OF NATURAL DRAINAGE SWALE (DEBRIS FLOW CHUTE)

APPROXIMATE LOCATION OF NET BARRIERS

GHAD BOUNDARY

APPROXIMATE LOCATION OF GRADED AND ENGINEERED HILL SLOPES WITH LOW SUSCEPTIBILITY TO EROSION

APPROXIMATE LOCATION OF PARK

DETENTION BASIN

NOTE: ALL COLORED AREAS ARE OPEN SPACE SUBJECT TO GHAD CONTROL BASE MAP SOURCE: UNKNOWN

	SITE MAP WITH GHAD BOUNDARY AND GEOLOGIC HAZARDS	PROJECT NO .:	7290.200.101	FIGURE NO.
	RIDGEVIEW AT VISTA GLEN	date: MAY	2008	2
EXCELLENT SERVICE SINCE 1971	SANTA PAULA, CALIFORNIA	DRAWN BY: SR	CHECKED BY: JA	
Order Number: 2243116 (03) Page Number: 8

LEGAL DESCRIPTION

Real property in the City of Santa Paula, County of Ventura, State of California, described as follows:

ALL THAT CERTAIN REAL PROPERTY SITUATED IN THE COUNTY OF VENTURA, STATE OF CALIFORNIA, DESCRIBED AS FOLLOWS:

PARCEL A OF LOT LINE ADJUSTMENT NO. 2005-CDP-02 RECORDED JUNE 9, 2005 AS INSTRUMENT NO. 20050609-0140849 OF OFFICIAL RECORDS BEING A PORTION OF AN UNNUMBERED LOT LYING NORTHERLY OF LOTS 23, 24, 25 AND 26 OF THE RANCHO SANTA ANA PAULA Y SATICOY IN THE CITY OF SANTA PAULA, COUNTY OF VENTURA, STATE OF CALIFORNIA, ACCORDING TO THE MAP THEREOF RECORDED IN BOOK "A", PAGE 290 OF MISCELLANEOUS RECORDS (TRANSCRIBED RECORDS FROM SANTA BARBARA COUNTY), IN THE OFFICE OF THE COUNTY RECORDER OF SAID COUNTY.

EXCEPTING THEREFROM THE OIL, MINERALS, AND OTHER RIGHTS GRANTED TO EDWARD W. HASKELL BY DEED DATED DECEMBER 24, 1864, RECORDED IN BOOK "B", PAGE 153 OF DEEDS, OTHER THAN 50/100THS INTEREST IN AND TO ALL OIL, GAS, HYDROCARBON SUBSTANCES AND OTHER MINERALS IN OR UPON OR THAT MAY BE PRODUCED FROM SAID LAND AS GRANTED TO THE MCKEVETT CORPORATION IN DEEDS RECORDED JANUARY 12, 1942 IN BOOK 652, PAGE 127 AND RECORDED APRIL 12, 1960, IN BOOK 1854, PAGE 465 BOTH OF OFFICIAL RECORDS.

APN: 100-0-010-315 and 100-0-010-325 and 100-0-010-425 and 100-0-010-485

APPENDIX A

GEOBRUGG

Rocco® Rockfall Protection System Maintenance Manual RXI-100 Energy Class 5

7290.200.101 March 10, 2008 Revised May 23, 2008

ROCCO[®] Rockfall Protection System

Maintenance Manual RXI-050/100/200

			_						1					
1 s	× 36.	° & 188	6 V 10	1 2		-	-	. ~	600	0		ATAX.		
	A.		. ¥ 2~*), ()					6				1.5	
							- 2 4				· • -	~ ~	17 X T	
							2.5							
1		71	4.6			_	_	- ^	1		• / 4	66	A L	- 11
							a o L							
					· · · · ·	~~~	1 - E	10.07		· · · ·	~ L -	~~~		~/
8 a.			06					-				00	A I.	
			740		-			/ 1.5	P.C.	13		[[]]]		
		-							1020	-			- U	
							22.000000000000000000000000000000000000		59799999999999				390 - 92 (MAC)	· AMERICAN

- Lifespan
- Inspections
- Criteria for repair and replacement
- Emptying and cleaning barriers
- Repair and replacement of components
- Inspection checklist
- Rope assembly drawings
- ISO 9001 Certificate

Proof of energy absorption capacity of the system based on one-to-one field tests

Testing agency:		Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) Birmensdorf, Switzerland				
Certification	agency:	Swiss Agency for Environment, Forest and Landscape (SAEFL) Bern, Switzerland				
Edition: Date:	100-N-FO / 02	2				

© Fatzer AG, Geobrugg Protection Systems, CH-8590 Romanshorn, Switzerland Subject to change without notice

Purpose and organization of the maintenance manual

This maintenance manual serves the regular maintenance and repair of a rockfall protection barrier, in order to guarantee a long service life for the structure and its safe and unrestricted function after impacts and during its lifespan. The maintenance manual should be understood as recommendation. Only standard situations are described. In case of extraordinary situations this manual may not be relevant to or sufficient for maintaining or repairing the barrier. In particular cases it is recommended to ask the manufacturer for technical advice.

This maintenance manual consists of the following parts:

- Lifespan
- Inspections
- Criteria for repair and replacement
- Emptying and cleaning the barrier
- Repair and replacement of components
- Inspection checklists, rope assembly drawings
- ISO 9001 certificate

No claims are made that this document is complete. It describes standard applications and does not take into account any project-specific parameters. Geobrugg cannot be held liable for any extra costs that may be incurred for special cases. In case of uncertainties, please contact the manufacturer. The General Sales Conditions of Fatzer AG and all its subsidiaries are applicable.

Responsible for the content of this manual:

Fatzer AG Geobrugg Protection Systems Hofstrasse 55 Postfach CH-8590 Romanshorn, Switzerland

 Tel.
 ++41-71-466 81 55

 Fax.
 ++41-71-466 81 50

 E-Mail
 info@geobrugg.com

Romanshorn, 04/29/05

FATZER AG Geobrugg Protection Systems Hofstrasse 55 • CH-8590 Romanshorn

(Stamp / authorized signatures)

I Range of application

This maintenance manual is valid for the Geobrugg RXI-050, RXI-100 and RXI-200 rockfall barriers. Please refer to the corresponding system drawings and product manuals:

RXI-050	(500 kJ)	System Drawing GS-1054	Product Manual No. 112-N-FO
RXI-100	(1000 kJ)	System Drawing GS-1057	Product Manual No. 106-N-FO
RXI-200	(2000 kJ)	System Drawing GS-1060	Product Manual No. 102-N-FO

II Quality of the system components

The Geobrugg division of Fatzer AG has been certified since August 22, 1995, in accordance with the **Quality Management System Requirements (ISO 9001: 2000, Rev. 2004), registration no. 11774-03.** The certifying body is the Swiss Association for Quality and Management Systems (SQS), which belongs to **EQ-Net 9000**. The quality manual completely specifies how to test the system components (raw material, commercial and end products) comprehensively in order to exclude deficiencies in quality. The relevant certificates are attached as appendices.

III Functional efficiency of the barrier systems

The functional efficiency of the system is based on one-to-one rockfall tests, carried out and tested in accordance with the guidelines for approval of rockfall protection nets in Walenstadt, Switzerland. The one-to-one rockfall tests are carried out by dropping a block vertically into the middle field of a three-field barrier. The distance between posts is 10 m, and an impact velocity of 25 m/s is reached. These approval tests are carried out jointly by the Swiss Federal Expert Commission on Avalanches and Rockfall (FECAR) and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL).

IV Quality control for maintenance

An appraisal of the damages should be carried out using the checklist in the maintenance manual. The maintenance manual describes in detail the different steps that must be followed by local building contractors for maintenance of the barriers. Unfortunately a photograph of the damages is always subject to subjective criteria. Contact the manufacturer in case of doubt, in order to guarantee the continuing quality and functional efficiency of the barrier.

V Product liability

Rockfall, landslides, debris flows or avalanches are sporadic and unpredictable. The cause is human (buildings, etc.), for example, or forces beyond human control (weather, earthquakes, etc.). The multiplicity of factors that may trigger such events means that guaranteeing the safety of persons and property is not an exact science.

However, the risks of injury and loss of property can be substantially reduced by appropriate calculations that apply good engineering practices, and by using predictable parameters along with the corresponding implementation of flawless protective measures in identified risk areas.

Monitoring and maintenance of such systems are an absolute requirement to ensure the desired safety level. System safety can also be diminished through events, natural disasters, inadequate dimensioning or failure to use standard components, systems and original parts, but also through corrosion (caused by environmental pollution or other man-made factors as well as other external influences).

The system may be under tension from stones and boulders in the net. This must be taken into consideration when components are removed or ropes are released. For this reason the elements must be dismantled and replaced according to good professional practice. Geobrugg cannot assume liability for inappropriate disassembly.

Table of contents

1 1	Lifespan	7
1.1	Lifespan of one component	7
1.2	Lifespan considering corrosion	7
2	Inspections	9
2.1	Regular inspections	9
2.2	Inspection after events	10
2.3	Accessibility	11
3	Criteria for maintenance and replacement	12
3.1	General / useful height	12
3.2	Rope sling with brake rings	12
3.3	Ring net	12
3.4	Support ropes (with RUNTOP ropes)	13
3.5	Retaining ropes	13
3.6	Lateral anchor rope, intermediate anchor rope	13
3.7	Posts	13
3.8	Hinge tube between post and base plate	13
3.9	Base plate	
3.10	Wire mesh	14
3.11	Anchorage of the posts	14
3.12	Spiral rope anchors	14
4	Tools for maintenance of rockfall barriers	15
11	Recommended tools	
4.1		15
4.1	Applying the wire rope clips	15
4.1 4.2 5	Applying the wire rope clips Emptying and cleaning the barrier	15 16 . 17
4.2 5.1	Applying the wire rope clips Emptying and cleaning the barrier Taking the ring net off the top support rope	15 16 . 17 17
4.1 4.2 5 5.1 5.2	Applying the wire rope clips Emptying and cleaning the barrier Taking the ring net off the top support rope Removing the nets from the bottom support ropes	15 16 17 17
4.1 4.2 5 5.1 5.2 5.3	Applying the wire rope clips Emptying and cleaning the barrier Taking the ring net off the top support rope Removing the nets from the bottom support ropes Breaking up the rocks	15 16 17 17 18 18
4.1 4.2 5 5.1 5.2 5.3 5.4	Applying the wire rope clips Emptying and cleaning the barrier Taking the ring net off the top support rope Removing the nets from the bottom support ropes Breaking up the rocks Emptying nets manually or mechanically without taking down the net	15 16 17 17 18 18 19
4.2 5 5.1 5.2 5.3 5.4 6	Applying the wire rope clips	15 16 17 17 18 18 19 20
4.2 5.1 5.2 5.3 5.4 6 6.1	Applying the wire rope clips Emptying and cleaning the barrier	15 16 17 17 18 18 19 20
 4.1 4.2 5.1 5.2 5.3 5.4 6 6.1 6.2 	Applying the wire rope clips. Emptying and cleaning the barrier Taking the ring net off the top support rope. Removing the nets from the bottom support ropes. Breaking up the rocks. Emptying nets manually or mechanically without taking down the net Repairing and replacing components Tensioning RUNTOP ropes and replacing RUNTOP rope rods (predetermined breaking point)	15 16 17 17 18 18 19 20 20 21
 4.1 4.2 5.1 5.2 5.3 5.4 6 6.1 6.2 6.3 	Applying the wire rope clips Emptying and cleaning the barrier	15 17 17 18 18 18 19 20 20 21
 4.1 4.2 5.1 5.2 5.3 5.4 6 6.1 6.2 6.3 6.4 	Applying the wire rope clips. Emptying and cleaning the barrier Taking the ring net off the top support rope. Removing the nets from the bottom support ropes. Breaking up the rocks. Emptying nets manually or mechanically without taking down the net Repairing and replacing components Tensioning RUNTOP ropes and replacing RUNTOP rope rods (predetermined breaking point) Replacing rope slings with brake rings Replacing Rocco rings in a ring net	15 16 17 17 18 18 19 20 20 21 21 21
 4.1 4.2 5.1 5.2 5.3 5.4 6 6.1 6.2 6.3 6.4 6.5 	Applying the wire rope clips Emptying and cleaning the barrier	15 17 17 18 18 18 18 19 20 21 21 21 21 22 23
 4.1 4.2 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 6.5 6.6 	Applying the wire rope clips. Emptying and cleaning the barrier Taking the ring net off the top support rope. Removing the nets from the bottom support ropes. Breaking up the rocks. Emptying nets manually or mechanically without taking down the net Repairing and replacing components Tensioning sagging nets. Tensioning RUNTOP ropes and replacing RUNTOP rope rods (predetermined breaking point) Replacing rope slings with brake rings Replacing Rocco rings in a ring net Replacing a support rope (incl. RUNTOP ropes)	15 17 17 18 18 19 20 20 21 21 21 22 23 24
 4.1 4.2 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	Applying the wire rope clips. Emptying and cleaning the barrier Taking the ring net off the top support rope. Removing the nets from the bottom support ropes. Breaking up the rocks. Emptying nets manually or mechanically without taking down the net. Repairing and replacing components Tensioning sagging nets. Tensioning RUNTOP ropes and replacing RUNTOP rope rods (predetermined breaking point) Replacing rope slings with brake rings. Replacing a ring net field Replacing a support rope (incl. RUNTOP ropes) Replacing a retaining rope.	15 17 17 18 18 18 18 19 20 20 21 21 21 21 22 23 24 26
 4.1 4.2 5.1 5.2 5.3 5.4 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	Applying the wire rope clips Emptying and cleaning the barrier	15 17 17 18 18 18 19 20 20 21 21 21 21 22 21 22 23 24 26
 4.1 4.2 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 	Applying the wire rope clips. Emptying and cleaning the barrier Taking the ring net off the top support rope. Removing the nets from the bottom support ropes. Breaking up the rocks. Emptying nets manually or mechanically without taking down the net Repairing and replacing components Tensioning sagging nets. Tensioning RUNTOP ropes and replacing RUNTOP rope rods (predetermined breaking point) Replacing rope slings with brake rings. Replacing a ring net field. Replacing a support rope (incl. RUNTOP ropes). Replacing a retaining rope. Replacing a lateral anchor rope, intermediate anchor rope. Replacing a post.	15 17 17 18 18 18 18 19 20 20 21 21 21 21 22 23 24 26 26

Maintenance Manual RXI-050/100/200 Page 6 / 30

6.11	Replacing a base plate	. 27
6.12	Replacing wire mesh	. 27
6.13	Replacing base plate anchors	. 27
6.14	Replacing spiral rope anchors	. 27
7	Final inspection	. 28

Appendices

- A Checklist "Inspection of barriers"
- B RXI-050/100/200 rope assembly drawings
- C ISO 9001 Certificate

1 Lifespan

1.1 Lifespan of one component

The lifespan of one component is influenced on one hand by **damage events**, which can impair the functional efficiency of an element, and on the other hand by corrosion, which affects the load-bearing capacity of an element. If a system element is no longer fully functionally efficient, as a rule it must be replaced. The exact point at which an element must be replaced must be determined for each individual element. If a component loses load-bearing capacity because of corrosion, its lifespan depends upon the selected **safety factor**. If the loss of load-bearing capacity (thinner metal cross section = lower tensile strength) renders the element unsafe, it must be replaced in any case. A combination of corrosion and damage event is also possible, if a damage event also damages the corrosion protection. This in turn impairs the lifespan of the component in question. An analysis of an RXI model rockfall protection construction can differentiate among 6 different elements, which are described in the following section on lifespan.

1.2 Lifespan considering corrosion

1.2.1 Post and base plate anchorages

The post anchors are left in the rough state, but they have the required corrosion addition of 2 mm on every external surface. Theoretically these anchors should fulfill their function in a neutral environment for at least 50 years.

1.2.2 Spiral rope anchors

The rope anchors consist of thick galvanized spiral ropes and an added corrosion protection tube in the loop area. The tube is also grouted in order not to expose the rope to the air. In a neutral environment, this corrosion protection should have an even longer lifespan than the post anchor.

1.2.3 Posts and base plates

These can be hot dip galvanized or untreated. The hot dip galvanizing of the posts is more for appearance, and not necessarily a longer lifespan. Hot dip galvanizing is, however, recommended for the base plates, because they lie on the ground and are soon covered with soil and boulders. This means they cannot be inspected directly.

1.2.4 Support-, RUNTOP-, anchor- and retaining ropes

In the basic construction design these ropes are made out of galvanized wires in accordance with DIN 2078. A general lifespan cannot be given since this depends greatly upon environmental influences. Corrosion and thus a thinning wire cross section is physically possible only if the zinc layer deteriorates (is used up). Tests on wire mesh covering in Germany indicated that zinc takes 15 to 20 years to deteriorate. However, the ropes can also be made out of special galvanized wire (Geobrugg Supercoating). Such aluminum-zinc alloys for protection against corrosion last at least two to three times longer than customary galvanized wires. In this way a lifespan of 40 to 60 years is possible.

1.2.5 Brake elements

The brake elements installed in the RXI systems are located outside the impact area and thus largely protected against mechanical damage.

The built-in brake rings consist on the one hand of hot dip galvanized steel tubes and on the other hand of short pressed aluminum compression sleeves. The hot dip galvanized steel tubes should fulfill their function for at least 40-50 years in a neutral environment. Since as a rule these brake elements are suspended above the soil, they dry out quickly. For this reason the danger of corrosion is relatively slight, which makes them last longer.

1.2.6 Rocco ring nets

These nets consist of robust, thick steel wires with a minimum diameter of 3.0 mm. The wires are specially galvanized, i.e., treated with an aluminum-zinc alloy (see section 1.2.4). The zinc equips the metal with an anodic corrosion protection layer. Its characteristics protect even when a couple of millimeters of the protective layer are gone, since the zinc acts directly over the gap. With Geobrugg Supercoating a lifespan of up to 60 years can be expected in a neutral environment.

2 Inspections

Rockfall protective barriers from GEOBRUGG need little or no maintenance if the kinetic energy released in rockfall events does not exceed the load limits for which the system was constructed. Lesser maintenance measures are nevertheless required after such impacts depending on the frequency.

Other repairs may be required in case of rockfall events with kinetic energy in excess of the constructionspecific load limits. The most standard (if also seldom occurring) maintenance tasks are described below. Rockfall events that occur only seldom obviously require less maintenance than those occurring frequently. Maintenance measures for events occurring often (daily) below the energy absorption limits of a system are generally limited to the routine inspections described below. Large events with rock avalanches in the range of the system limits can often require smaller repairs. Large events that exceed the system limits may require more extensive repairs under some circumstances.

As a rule the components used in a rockfall protection barrier must **only require maintenance** when rocks plunge into the barrier or when extensive corrosion is present, which impairs the expected lifespan. Regular inspections are nevertheless recommended in order to ensure the performance of the barrier, which can be impaired through rocks lying in the net. These inspections can also uncover possible damage to the system caused by impacts or corrosion.

2.1 Regular inspections

Interval for regular inspections

The appropriate interval depends above all on the following parameters:

- rockfall frequency
- vegetation

Quick check / routine check

In a standard situation two normal visual inspections per year are sufficient. If rockfall is frequent, more inspections may be called for. Inspections should be carried out before winter begins and after the end of winter.

Anchorage

Regular optical checks of the condition of the anchorage should be carried out every 10 years.

The regular quick check of the structure at least twice per year includes the following:

- Are there larger rocks lying in the net?
- Were brakes activated? To what extent were they strained?
- Was the useful height reduced by sagging ropes?
- If so, to what extent?
- Check the wire rope clips again with a torque wrench.
- Is corrosion visible?
- Clear out boulders, soil, broken rocks, dried leaves, etc. behind the barrier to avoid the formation of "ski jumps". This would impair the useful height, the flexibility and thus the energy distribution function.

2.2 Inspection after events

After reported or recorded events an immediate inspection is required. The following items must be checked (see checklist in appendix):

- Were brake rings strained? To what extent were they strained?
- By how much was the useful height of the system reduced?
- Is the net damaged? To what extent was it damaged?
- How many rings were broken?
- How many rings are bent?
- Were support-, anchor- and retaining ropes damaged (heavily warped or bent)?
- To what extent were they damaged?
- Were rope slings damaged?
- Were individual wires damaged?
- · Was a section of the rope over tensioned?
- Were posts, base plates or connecting pins damaged?
- Is damage visible on the GEWI anchors of the base plates?
- Was a rod anchor bent? How badly was it bent?
- Was a rod anchor pulled out of the soil? How far was it pulled out of the soil?

- Is damage visible on the spiral rope anchors?
- Was a metal tube damaged?
- Was a loop damaged?
- Was a spiral rope anchor pulled out of the soil?
- How far was it pulled out of the soil?

If one or more of these elements was damaged, the damage must be appraised and staged in accordance with the criteria given in section 3, which follows.

2.3 Accessibility

The accessibility of the barrier should be guaranteed to the extent that all load-bearing components can be inspected. The necessary infrastructure will depend on the terrain. The figure below gives an example for a secure climbing ladder.

Figure 1 Example of a ladder for climbing

3	Criteria for maintenance and replacement	Section no.			
3.1	General / useful height	see 5			
Rub the ovei of th	ble may not be allowed to collect behind the barrier to more than 1/4 to 1/3 of height of the net. Collected rubble under the net can lead to a dead load that rloads the entire system. For this reason collected rubble should be cleared out nese systems.				
HIN	T: Routine cleaning of the systems is UNAVOIDABLE for orderly func- tioning, as a precautionary measure against unnecessary damages!				
The dam well	residual useful height of the barrier after an impact is a good indicator for the nages that may be expected. A noticeable sag in the support rope or nets, as as a considerable alteration in the angle of the posts, is an indication of strain	see 6.1			
well as a considerable alteration in the angle of the posts, is an indication of strain in one or more of the brake rings, which may have to be replaced. Depending on the selected safety factor, when the barrier height is restored the system may need to be retensioned if the useful height was reduced by over 30%.					
3.2	Rope sling with brake rings	see 6.3			
The brake rings should be replaced if over 50% of the maximum tensile strain has been reached. This corresponds to an elongation of ca. 40 cm. Attention must also be paid to holding the additional sagging of the net caused by strain in the brake rings within limits, since this has considerable effect on the useful height of the structure. The relevant ropes can also be retensioned without replacing the brake elements simply by retensioning the support rope.					
3.3	Ring net				
As a	a rule, it is not necessary to replace entire nets even when some rings are bent.				
•	If individual wires have slipped out of a clip, they should be secured with a wire rope clip of the appropriate size.	500 6 4			
•	If ring wires are found that are obviously compressed or that have been badly bent, these rings must be replaced.	366 0.4			
	If a ring exhibits fracture areas, the ring in question must be replaced.				
٠	The entire net must be replaced if more than 10 rings exhibit fracture areas and/or at the same time several rings are compressed and badly bent.	see 6.5			

3.4 Support ropes (with RUNTOP ropes)

With the exception of external influences, such as rockfall striking a rope, the lifespan is exclusively determined by corrosion. The rope must be replaced if the rope cross-section shows substantial reduction. This is normally recognized by finding cracked outer wires. In this case the rope becomes brittle and loses its tensile strength within a few years. In case of doubt a piece of rope must be cut out so that the tensile strength of the rope can be checked. If the test result is positive, the entire rope must be replaced.

Whether the entire rope or only the affected rope section must be replaced depends on the extent of the damage to the rope. Ropes can be damaged by external forces. Crushed and cracked wires are an indication. Replacement of the rope or a section of the rope is always indicated if more than ca. 10% of the cross section is affected. In case only a section of the rope is affected, only the affected rope section must be replaced. If there are distinct kinks in the rope, however, it is recommended that the rope or a section of the rope be replaced. In case one or more strands are broken, the rope or this section of the rope must always be replaced.

3.5 Retaining ropes	see 6.7
The same criteria apply as for the support ropes. However, it is often more efficient and more cost effective to replace the entire retaining rope.	
3.6 Lateral anchor rope, intermediate anchor rope	see 6.8
The same criteria apply for replacement of these ropes as for the support ropes. However, it is more efficient and more cost effective always to replace the entire rope.	
3.7 Posts	see 6.9
The most important function of the posts is maintaining the useful height of the nets. Slightly bent posts need only be replaced if their condition leads to a considerable loss of height. It is recommended to replace a post if it is bent more than 15°.	
	see 6.10

3.8 Hinge tube between post and base plate

Impacts onto the post can bend or break the hinge tube between post and base plate (predetermined breaking point in order to avoid damages to the base plates and anchorages). Bent or broken hinge tubes must be replaced.

see 6.6

3.9 Base plate

Only very severe impacts, those that reach or exceed the construction limits, should impair the base plate. If plates in the area of the rope assemblies, the support block or the anchor holes are bent, a replacement is in order. Slight warping is not acceptable if the weld seams are affected. If a weld seam is defective, the base plate must be replaced.

3.10 Wire mesh

The wire mesh prevents smaller rocks from falling through the ring net. For this reason the entire surface must be covered with wire mesh. Especially the gaps between the bottom support rope and the soil must be covered. The wire mesh can be pulled down in an impact and must be reattached or replaced. Broken wires in the wire mesh lead to gaps. For this reason these areas must be covered with new wire mesh.

3.11 Anchorage of the posts

Impacts, especially those next to the posts or base plates, can damage anchors. In case a rod anchor (GEWI anchor) is badly bent at the point (>15°) or cracks are visible, the anchor must be replaced. The anchor also must be replaced if it is pulled over 3 cm out of the soil, since under some circumstances its load-bearing capacity may be lowered.

3.12 Spiral rope anchors

Spiral rope anchors need only be replaced if serious damage to the wires is present. If one of the steel tubes of an anchor head is damaged, this does not lower the load limits. It can, however, lead to a lowered lifespan because of the reduction in corrosion protection. The anchor must also be replaced if it has been pulled over 3 cm out of the soil, since its load-bearing capacity may have decreased.

6.11

see

see 6.13

see 6.12

see 6.14

4 Tools for maintenance of rockfall barriers

4.1 Recommended tools

The following tools should be on hand for maintenance:

- one or two 6 m long ladders
- two hand winches with 20 kN tractive force (e.g., HABEGGER model hand winch)
- two hand winches with 7.5 kN tractive force (e.g., LUGAL model hand winch)
- various slings, each 1 m in length
- 5/8" and 7/8" shackles
- torque wrench, range 50-120 Nm
- socket or fork wrench set
- various tools, such as hammer, pliers, etc.
- hemp ropes
- tape measure
- angle water level
- cutting disk
- two eccentric clamps, small, for ropes with a diameter to 16 mm (draw tongs for wire ropes)
- at least two eccentric clamps, large, for ropes with a diameter to 22 mm (draw tongs for wire ropes)
- two complete sets of monkey wrenches

4.2 Applying the wire rope clips

The first wire rope clip is attached close to the thimble or the loop. The wire rope clips must be spaced so that the distance between them e is a multiple of from 1.5 to 3 times the width t of the wire rope clip.

The clip stirrups ("u-bolts") are always applied on the unstressed rope end, the jaws ("saddle") always on the stressed rope ("Never saddle a dead horse").

Extract from EN 13411-5 (DIN 1142)

Nominal size [mm]	Required torque (1) [N * m]	Required number of wire rope clips	Wrench width [mm]
16	55.0	4	22
19	75.0	4	22
22	120.0	5	24
22 GEOBINEX	120.0	10	24

Table 1 Torque values and number of wire rope clips

The torque values given apply to greased screw-nut connections.

During installation and before starting operation, tighten the hexagonal nuts to the required torque.

After installation of the barrier, the torque of the rope connections on the lateral and upslope anchors must be rechecked or readjusted.

(1) The torque values given are 10 % higher than those recommended in the standard. This is based on the deviation in common torque wrenches.

5 Emptying and cleaning the barrier

There are different ways to clean rocks, boulders or soil out of rockfall barriers. The method used depends on the local border conditions and the amount of material in the nets.

Warning: The system may be under tension from the rocks and boulders found in the net. This must be taken into consideration when removing components or releasing ropes!

5.1 Taking the ring net off the top support rope

The shackles on the top support rope and on the edge towards the neighboring ring nets are removed. The net can be taken down and laid upon the ground. Then the net can be manually or mechanically cleaned with a front-end loader or similar. Care must be taken not to damage the ring net. On very steep slopes, the rocks slide and roll downslope on their own after the net has been taken down. Make sure that the rocks rolling down the slope do not cause any damage (see figure 2).

Figure 2 Emptying rocks safely (with rope secured)

Be aware that the filled ring net can be under great tension because of the weight in the net. This should be taken into consideration when removing the shackles. The net should be secured with additional ropes (three to six ropes), which are fastened above on the net (these are best applied on the second ring row), guided over the support rope and either held by workers or guided with hand winches to anchors laid uphill. On very steep slopes, the bottom edge of the net can also be secured in a similar way. Then the entire net with its contents can be laid down like a basket on safe ground.

If the tension in the net is too great for the solutions described above, an auxiliary rope with a length of ca. 30 m must be pulled through the second ring row and over the post head. The rope is fastened to the upslope anchors on the left and right next to the field that sustained an impact. To empty out the net, a rope hoist (Habegger) must be installed on one side. After that, the shackle is released with the aid of pliers and removed. The net can now be emptied out while maintaining control over it. Care must be taken in unfavorable conditions that the barrier is not allowed to tip over upslope.

5.2 Removing the nets from the bottom support ropes

This method can be employed if the lower shackles are accessible, even when there are rocks in the net. As the shackles are released, the net contents slide or roll out of the net. If the weight of the rocks makes it impossible to raise the net, the net can be hoisted up with ropes and hand winches.

In order to transport the rocks or boulders safely downslope, it is recommended to convey them safely and efficiently downwards using gutters or large pipes made of synthetic material. These can be filled manually above in the barrier.

5.3 Breaking up the rocks

Large blocks that cannot be lifted out or evacuated must be broken up into smaller sizes. The following methods come into question depending on the situation:

- manual
- explosive (see figure 3)
- expansion cement ("cold explosive agent"). For this the rocks must be drilled, filled with the "propellant" (e.g., the Betonamit company) and water added. After about one day the rock is broken and can be cleared.

Figure 3 Breaking up a block with explosive

5.4 Emptying nets manually or mechanically without taking down the net

In certain cases one can reach the barrier from the back and remove rocks manually or with a front-end loader or similar. Care must be taken not to damage the net while emptying it. The material can then be dumped downslope, over the net, ready for removal. If the area behind the barrier is accessible, the truck can be loaded directly.

If a crane is available, the rocks can also be fitted with a wire hanger. For this the rocks must be drilled. The eyelet bolt can be fastened chemically (e.g., HILTI "HIT"), or a drilled-through screw can be fastened with a nut. So-called heavy-duty dowel pins, which use friction for fastening, can also be used.

Figure 4 Providing the block with towing hooks

Figure 5 Lifting out the block with the aid of a crane

6 Repairing and replacing components

6.1 Tensioning sagging nets

The affected top support rope must be fastened with a hand winch on the rope end that forms a loop with the wire rope clips (1). The other end of the hand winch can be fastened on the top support rope as shown (2). The hand winch is tensioned (3). The wire rope clips are released until the rope can slide through. Then the rope is again tensioned with the hand winch. Finally the wire rope clips are tensioned with a torque wrench with the right torque value (4).

Figure 6 Tensioning sagging nets

6.2 Tensioning RUNTOP ropes and replacing RUNTOP rope rods (predetermined breaking point)

After an impact the broken RUNTOP rope rods must be replaced in the impact area and the RUNTOP ropes retensioned. To do this it is recommended to release the RUNTOP rope wire rope clips on the side of the RUNTOP rope that points in the direction of the impact. In this way it is possible that the corresponding RUNTOP rope end with the wire rope clip can be refastened in the correct position in accordance with the manual. Afterwards a small come-along winch (e.g., LUGAL type) can be attached on the other side of the RUNTOP rope with the rings on it is retensioned, and the clip reattached as per the manual.

6.3 Replacing rope slings with brake rings

A hand winch is fastened to the support rope on one side and on the other side to the spiral rope anchor (1). The rope is tensioned until the rope sling with brake rings (2) is no longer under tension and can be replaced. After releasing the hand winch, the support rope must be retensioned as described in section 6.1.

Figure 7 Replacing rope slings with brake rings

6.4 Replacing Rocco rings in a ring net

The simplest way to replace individual rings is by installing a single ring in the net with shackles. Appropriate prefabricated rings can be obtained from Geobrugg. Care should be taken to order the right type of ring. The rings can then be fastened to the neighboring rings with four shackles. Afterwards the damaged ring is cut out.

In order to replace a ring identically to the rest of the net, the following easily carried out procedure must be followed:

A portion of a replacement rope with a diameter of 4 to 8 mm is pulled through the (4) rings adjacent to the affected ring. This temporary rope is tensioned to a diameter that is smaller than the single ring, and then fastened with a wire rope clip (1). Now the ring bundle can be inserted into the four neighboring rings (2) by sticking a wire end into the neighboring rings. Then the bundle can be rotated until the entire bundle has been inserted. Then the ring bundle is fastened with three wire rope clips of the right size along the length of the ring (3). Finally the temporary rope can be released.

Figure 8 Replacing a Rocco ring

6.5 Replacing a ring net field

Be aware that rocks may be lying in the net and could fall out of the net when it is removed. Above all, the required safety precautions must be taken. Remember that the nets could be under high mechanical tension because of the rocks in the net.

A net field is replaced as follows:

- a) The shackles to the neighboring nets are released.
- b) Depending on the situation, either the shackles on the top support ropes or the shackles on the bottom support ropes are released first. If the net is full of rocks, and there is danger of the rocks rolling downwards in an uncontrolled fashion, the net can be released in a way that is the reverse of the installation of the net.
- c) Now the net can be removed.
- d) The nets can be laid down still packed on the appropriate positions between the two neighboring posts. It is best to begin with a field on the border. The top edge rings of the ring nets are marked with paint. For the assembly, pull a further rope through the second row of the ring net. The net should not yet be unfolded.
- e) The nets are raised into position with a further rope. This rope is fastened on one of the neighboring posts (1), pulled through rings in the second row (2) and guided over the rope fastening of the other post to its base plate (3). The rope is tensioned with a hand winch (4) until the net is at the height of the top support rope. During this step the packaging of the nets can be cut open.
- f) Now the net can be opened like a curtain and can be attached on the end with an additional shackle to the vertical rope if on a field lying on the border, or else to a neighboring net.
- g) The net is then temporarily fastened to the top support rope with a pair of shackles.
- h) If needed the net can be pulled to the other end with a hand winch.
- i) After this the additional rope can be taken off and prepared for the next net. This neighboring net is fastened to the top support rope in the same manner.
- j) This procedure is repeated until all nets are temporarily fastened to the top support rope.
- k) If needed the nets can be shifted sideways until they are evenly distributed along the entire fence line.
- I) The rings at the bottom of the net are similarly fastened temporarily to the bottom support rope with 2 or 3 shackles.
- m) The nets are permanently fastened as follows: The four ROCCO rings next to the post are installed on the RUNTOP rope (5), the rest on the support rope (6). The corner rings with the end posts are fastened according to the product manual of the specific barrier.
- n) This procedure is repeated until all nets are fastened on the support ropes and connected to each other.

Figure 9 Replacing a Rocco net

6.6 Replacing a support rope (incl. RUNTOP ropes)

It is only necessary to replace a support rope if the rope itself was damaged. Normally only the rope slings with elongated brake rings are replaced.

6.6.1 Top support ropes

Depending on the situation, it is probably simplest to dismantle the affected support rope and the ring nets completely and take off all shackles on the top and edges of the ring nets. The whole is then reassembled with a new support rope. It may be more cost effective in some circumstances to fasten the ring net temporarily on the upper rings with an auxiliary rope that is led through the second ring row and suspended from one post to the next and tensioned. Then only the shackles on the upper rings of the net need to be taken off. Every situation calls for a decision as to which procedure is more cost effective.

The support ropes are replaced as follows (also see corresponding product manual):

- a) Make sure that the lateral anchor ropes of the affected segment are in the right position. Make sure that the retaining ropes are in the right position (i.e., the angle of the post must be correct). These ropes may possibly need replacing and/or rearranging if they are also affected.
- b) Take off the wire rope clips on the end of the support ropes. Lay the old support ropes on the ground and then take them away.
- c) Roll out the new support rope on the ground, downslope and parallel to the fence line.
- d) The top support ropes are guided over the post head.
- e) The RUNTOP rope runs on the downslope side of the post and is fastened onto the support rope on the ends (with thimbles/loop) by shackle. It is centered across from the post, stretched and fastened on both sides before the loop with a wire rope clip EN 13411-5 (DIN 1142).
- f) After the support ropes and RUNTOP ropes have been fully installed, the reassembly of the nets can be begun.
- g) New wire rope clips should always be used for the end loops.

6.6.2 Bottom support ropes

Normally only the shackles on the lower rings are taken off for the preparatory tasks.

The procedure is as follows:

- a) Take off the wire rope clips on the end of the support ropes. Remove the old support ropes.
- b) Roll out the new support rope on the ground, downslope and parallel to the fence line.
- c) The support ropes are guided under the rope guiding tube onto the base plate. Therefore, they have to be guided underneath the overturn securing rope of the post.
- d) The RUNTOP rope runs downslope of the base plate and is fastened on the ends (with thimbles/loop) by shackle to the support rope. It is centered across from the post, stretched and fastened on both sides before the loop with a wire rope clip EN 13411-5 (DIN 1142).
- e) After the support ropes have been fully installed, the nets can be attached to the support ropes with the shackles.
- h) New wire rope clips should always be used for the end loops.

6.7 Replacing a retaining rope

Depending on the situation, the post for the affected retaining rope must first be secured with a hand winch and brought back to the correct angle before the retaining ropes can be relinquished. The angle of the post must look like this:

- Up to a slope inclination of 30° (0°< ß 30°) the post axis must be at an angle of 15° to the horizontal downhill.
- For steeper slopes (30°< ß 45°) the post axis must be at an angle of 75° to the slope.

Then the brand-new retaining rope is installed. Retaining ropes are installed as follows:

Hang the loop of the retaining rope on the head of the post. The end of the rope is then inserted into the anchor loop. The loop thus formed is fastened with wire rope clips EN 13411-5 (DIN 1142). New wire rope clips should be used for the loop.

6.8 Replacing a lateral anchor rope, intermediate anchor rope

If the lateral anchor rope is not severed, a new rope must be installed before releasing the damaged rope. Otherwise the system could collapse.

- Hang the loop of the lateral anchor rope on the head of the post.
- The end of the rope is then inserted into the anchor loop of the lateral anchor, tightened and fastened with wire rope clips in accordance with EN 13411-5 (DIN 1142).

6.9 Replacing a post

If a middle post must be replaced, in most cases the defective post can be removed without disassembling the system. To do this, the securing rod on the post head is released, then the hinge tube on the base plate is removed, and finally the post is pulled backwards out of the support block. Then the defective post is removed and a new one installed in the reverse sequence.

If this procedure is impossible, or if a border post must be replaced, the entire barrier must be turned over uphill. For this, first lateral anchor ropes, intermediate anchor ropes and downslope anchor ropes must be released. Generally the top support ropes must be released by slightly releasing the wire rope clips on the loops in order to be able to turn over the barrier. Then the entire barrier can be turned over uphill. The new post is laid next to the damaged post. Now all ropes on the head of the post are hung around the new post. The old post can be released and the new one installed on the base plate.

6.10 Replacing a hinge tube between post and base plate

Before replacing a bent or broken hinge tube, the post must first be drawn back into its position on the support block. After that a new connecting pin is inserted and fixed with spring cotters.

6.11 Replacing a base plate

The procedure for replacing a base plate is the same as for replacing a post.

6.12 Replacing wire mesh

Cut through the baling wire and remove the damaged mesh wire. Replace with new mesh wire and fasten this with double baling wire or stranded wire. Make sure that the mesh wire overlaps with the neighboring field. This also applies for the top support rope. Besides, the gap between the bottom support rope and the soil must be covered.

6.13 Replacing base plate anchors

If one or both anchors must be replaced, the base plate must be laid beside the old base plate at ca. 30 to 50 cm distance. Two new anchor holes must be drilled and new anchors cemented in. See product manual for the anchorage procedure.

6.14 Replacing spiral rope anchors

If a spiral rope anchor must be replaced, a new borehole should be drilled beside the old spiral rope anchor at ca. 50 cm distance. Care must be taken that the spiral rope anchor is long enough. See corresponding product manual for the anchorage procedure.

7 Final inspection

Above all, the following points must be checked upon completion of the maintenance:

- a) Are the support ropes and the lateral anchor ropes connected to the right anchor?
- b) Ring net on support rope and the RUNTOP ropes applied correctly?
- c) Are the rope assemblies on the post foot and on the post head correct?
- d) Were double clips for the RUNTOP rope / support rope separation correctly installed?
- e) For the support rope separation, do the bottom support ropes go to the appropriate anchors and not to the base plates?
- f) Right number of wire rope clips on the end connections of the ropes? Are the wire rope clips correctly placed?
- g) Check the torque on the wire rope clips on the end connections.
- h) Are the nets connected to each other correctly?
- i) Is the border net correctly fastened to the vertical ropes?
- j) Is the sag of the top support rope less than 3% of the post spacing?

Checklist "Inspection of barriers"

This checklist is intended for the inspection of a barrier. Please enter your observations, check off the relevant boxes and take pictures.

The paragraph numbers next to the box (e.g., no. 3.1) are reference numbers to the corresponding description in this maintenance manual.

The paragraph describes the criteria for repair and replacement.

Location:

General:

Impact area:

The following objects were found behind the barrier:

leaves / soil / wood boulders / gravel	up to 20 cm > 20 cm	3.1	
rocks	up to 100 kg > 100 kg > 500 kg	3.1 3.1 / 3.2 3.1 / 3.2 /3.3	rocks up to ca. 35 cm size rocks over 60 cm size
All wire rope clips exhibit the right torque v	yes alue. no		
Visible damage:			
A) our nort ronge / ron	a alimaa with h	roko ringo	D) retaining range
A) support topes / top	e sings with b	rake migs	b) retaining ropes
deformed rope	yes no	3.4	deformed rope
A support ropes / rop deformed rope Net sagging between posts	yes no up to 20 cm > 20 cm > 50 cm > 1 m	3.4 (3.1) 3.1	deformed rope angle between post and soil

3.5

(3.5) 3.5

yes

no

ca. 70°

ca. 80°

> 90°

C) lateral anchor ropes,	intermediate	anchor ropes	D) spiral rope anchor				
deformed rope	yes no	3.6	damaged loop pulled out of the ground (in cm)	yes no up to 1 cm	3.12		
				> 1 cm > 5 cm	(3.12)		
E) ring net			F) wire mesh				
compressed rings/ broken wires	1 ring < 5 rings > 5 rings	3.3	torn down / perforated	yes no	3.10		
G) posts / base plate							
deformed post	yes no	3.7					
hinge tube bent	yes no	3.7 / 3.8					
deformed base plate	yes no	3.9	damaged rod anchor pulled out of the ground	no > 3 cm	3.11		

Comments/ suggestions / sketches:

100-N-FO/02

The Swiss Association for Quality and Management Systems

SQS herewith certifies that the company named below has a management system which meets the requirements of the normative bases specified below and issues the company

Fatzer Inc.

CH-8590 Romanshorn

certified areas

BRUGG ROPE STRUCTURES

Steel Wire Ropes

Protection Systems

Rope Structures

Field of activity

Rope and Netting Technologies

on the basis of the audit result the

SQS Certificate ISO 9001:2000

CH-3052 Zollikofen, August 4, 2004 This SQS Certificate is valid up to and including August 3, 2007 Scope number 17 Registration number 11774

President SQS

V. Edelman

X. Edelmann

Managing Director SQS

T. Zahner

R

THE INTERNATIONAL CERTIFICATION NETWORK

CERTIFICATE

IQNet and SQS hereby certify that the organization

Fatzer Inc. CH-8590 Romanshorn

certified areas

Steel Wire Ropes, Protection Systems, Rope Structures

Field of activity

Rope and Netting Technologies

has implemented and maintains a

Management System which fulfills the requirements of the following standard

ISO 9001:2000

Scope No: 17 Issued on: 2004-08-04 Validity date: 2007-08-03 Registration Number: **CH-11774**

all a

Dr. Fabio Roversi President of IQNet M

Theodor Zahner Managing Director SQS

IQNet Partners*:

AENOR Spain AFAQ France AIB-Vincotte International Belgium ANCE Mexico APCER Portugal CISQ Italy CQC China CQM China CQS Czech Republic DQS Germany DS Denmurk ELOT Greece FCAV Brazil FONDONORMA Venezuela HKQAA Hong Kong ICONTEC Colombia IMNC Mexico IRAM Argentina JQA Japan KEMA Netherlands KFQ Korea MSZT Hungary Nemko Certification Norway NSAI Ireland ÖQS Austria PCBC Poland PSB Certification Singapore QMI Canada RR Russia SAI Global Australia SFS Finland SII Israel SIQ Slovenia SQS Switzerland SRAC Romania TEST St Petersburg Russia

IQNet is represented in the USA by the following partners: AFAQ, AIB-Vincotte International, CISQ, DQS, KEMA, NSAI, QMI and SAI Global

*The list of IQNet partners is valid at the time of issue of this certificate. Updated information is available under www.iqnet-certification.com

APPENDIX B

ALBUS-KEEFE AND ASSOCIATES

Supplemental Geotechnical Investigation and Rough Grading Plan Review Proposed 75-Lot Residential Development Western Terminus of 10th Street, Santa Paula, California May 3, 2006

7290.200.101 March 10, 2008 Revised May 23, 2008

ALBUS-KEEFE & ASSOCIATES, INC.

GEOTECHNICAL CONSULTANTS

May 3, 2006 J.N.: 1489.00

Ms Tiffany Sukay Comstock Homes 321 12th Street, Suite 200 Manhattan Beach, California 90266

Subject: Supplemental Geotechnical Investigation and Rough Grading Plan Review, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California.

Dear Ms Sukay:

Albus-Keefe & Associates, Inc., pleased to present to you our Supplemental Geotechnical Investigation and Rough Grading Plan Review report for the proposed residential development at the subject site. This report presents the results of our review of geologic data, previous geotechnical reports for the site and surrounding area, review of aerial photographs, review of the rough grading plans for the site, exploratory drilling, laboratory testing, engineering and geologic analyses, and our conclusions and recommendations pertaining to the proposed site development.

We appreciate this opportunity to be of service to you. If you have any questions regarding the contents of this report, please do not hesitate to call.

Sincerely yours,

ALBUS-KEEFE & ASSOCIATES, INC.

Patrick M. Keefe

Patrick M. Keere Principal Engineering Geologist CEG 2022

1011 North Armando Street, Anaheim CA 92806-2606 (714) 630-1626 FAX (714) 630-1916

TABLE OF CONTENTS

REPORT

1.0	INTRODUCTION	. 1
1.1	PURPOSE AND SCOPE	1
1.2	PROPOSED SITE DEVELOPMENT	1
1.3	SITE LOCATION AND DESCRIPTION	2
2.0	INVESTIGATION	. 4
2.1	AERIAL PHOTOGRAPHS AND LITERATURE REVIEW	4
2.2	GEOLOGIC MAPPING	4
2.3	SUBSURFACE EXPLORATION	4
2.4	LABORATORY TESTING	5
3.0	GEOLOGIC CONDITIONS	. 5
3.1	GEOLOGIC SETTING	5
3.2	GEOLOGIC UNITS	5
3	.2.1 Non-Engineered Artificial Fill	5
3	.2.2 Colluvium	5
3	.2.3 Terrace Deposits (Qt)	6
3	.2.4 Saugus Formation (TQsa)	6
3.3	GEOLOGIC STRUCTURE	6
3	.3.1 Bedding and Jointing	6
3	.3.2 Faulting	6
3.4	LANDSLIDES AND SURFICIAL FAILURES	6
3.5	GROUNDWATER	7
4.0	ANALYSES	.7
4.1	SEISMICITY	7
4.2	SLOPE STABILITY	8
4.3	SETTLEMENT	8
4.4	SHEAR PIN DESIGN	9
5.0	CONCLUSIONS	10
5.1	FEASIBILITY OF PROPOSED DEVELOPMENT	10
5.2	GEOLOGIC HAZARDS	10
5.	.2.1 Ground Rupture	10
5.	.2.2 Ground Shaking	10
5.	.2.3 Liquefaction	10
5.	.2.4 Landslides	11
5.	.2.5 Seiche and Tsunami	11
5.3	SLOPE STABILITY	11
5.4	SETTLEMENT	12
5.5	EXCAVATION AND MATERIAL CHARACTERISTICS	12
5.6	SHRINKAGE, BULKING AND SUBSIDENCE	12
6.0	RECOMMENDATIONS	13
6.1	EARTHWORK	13
6.	.1.1 General Earthwork and Grading Specifications	13
6.	.1.2 Pre-Grade Meeting and Geotechnical Observation	13
6.	.1.3 Site Clearing	13
6.	.1.4 Ground Preparation	13
6.	.1.5 Lot Capping	14
6.	.1.6 Fill Placement	14
6.	.1.7 Temporary Excavations	14

TABLE OF CONTENTS

REPORT

6.1.8 Fill Slopes	15
6.1.9 Cut Slopes	15
6.1.10 Sliver Cut/Sliver Fill Slopes	15
6.1.11 Stabilization Fills	15
6.1.12 Slope Backdrains	16
6.2 SHEAR PINS FOR NATURAL SLOPES	16
6.3 CONTAINMENT BARRIERS OR DEBRIS WALLS	16
6.4 SEGMENTAL RETAINING WALLS	
6.5 EROSION PROTECTION FOR SLOPES	17
6.6 SEISMIC DESIGN PARAMETERS	17
6.7 POST GRADING CONSIDERATIONS	17
6.7.1 Site Drainage	17
6.7.2 Utility Trenches	17
6.8 PRELIMINARY FOUNDATION DESIGN	
6.8.1 Soil Expansion	18
6.8.2 Settlement	
6.8.3 Allowable Bearing Value	
6.8.4 Lateral Resistance	
6.8.5 Foundation Setbacks	
6.8.6 Beam Dimensions	19
6.8.7 Slab on Grade	19
6.9 RETAINING WALLS	20
6.9.1 Allowable Bearing Value	20
6.9.2 Lateral Resistance	20
6.9.3 Footing Reinforcement	20
6.9.4 Footing Observations	21
6.9.5 Earth Pressures.	21
6.9.6 Drainage and Moisture-Proofing	21
6.9.7 Retaining Wall Backfill	22
6.10 CEMENT TYPE	22
6.11 EXTERIOR FLATWORK	22
6.12 PRELIMINARY PAVEMENT RECOMMENDATIONS	22
6.12.1 Subgrade Preparation	22
6.12.2 Preliminary Pavement Design	23
6.12.3 Pavement Materials	23
7.0 PLAN REVIEW AND CONSTRUCTION SERVICES	23
8.0 INVESTIGATION LIMITATIONS	24
REFERENCES	25

TABLE OF CONTENTS

FIGURES AND PLANS

Figure 1 - Site Location Map Plates 1 through 8 - Geologic Maps (pocket enclosure) Plate 9 and 10 – Geologic Cross Sections (pocket enclosure)

APPENDICES

APPENDIX A - Exploratory Boring Logs Plates A-0- through A-41

APPENDIX B - Laboratory Test Program

Table B-1 Summary of Laboratory Testing Plates B-1 through B-9 - Direct Shear Test Plots Plates B-10 through B-25 - Consolidation Test Plots Plate B-26 – Grain Size Distribution Plot

APPENDIX C – Exploration Logs and Laboratory Test Results by Others

APPENDIX D- Stability Analyses

Plates D-1 through D-13 - Plots of Analyses

APPENDIX E- Settlement and Pile Analyses

Plates E-1 through E-9

APPENDIX F – Typical Grading Details

Plates F-1 through F-6

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

The purposes of our investigation were to evaluate the nature of subsurface soil and geologic conditions, to evaluate their engineering characteristics, and to provide geotechnical recommendations with respect to site earthwork, as well as design and construction of structural foundations and associated site improvements. The scope of our work included the following:

- Review of published geologic and seismic data
- Review of aerial photographs and previous geotechnical reports
- Review of the referenced rough grading plans
- Review of previous geotechnical reports
- Drilling and surface logging of 13 exploratory borings utilizing a hollow-stem auger drill rig
- Drilling and down-hole logging of 3 exploratory borings utilizing a bucket auger drill rig
- Selective sampling of soil and bedrock materials
- Laboratory testing of samples obtained from site exploration
- Engineering analyses of data obtained from the exploratory excavations and laboratory testing
- Evaluation of site seismicity, slope stability, liquefaction, and settlement
- Preparation of this report.

1.2 PROPOSED SITE DEVELOPMENT

Based on our review of the referenced 20-scale rough grading plans, the site will be developed to create 75 residential building pads, three park sites, a detention basin, and associated streets. Several conventional and mechanically-reinforced segmental retaining walls reaching maximum heights of approximately 21 feet are proposed. Other anticipated site improvements include utility services, asphalt and concrete pavements and decorative hardscape.

Cut and fill grading will be performed to achieve the desired surface configuration for the proposed development. Maximum depths of proposed cuts and fills are approximately 24 feet each. Cut and fill slopes are proposed at a slope ratio of 2:1 (H:V) or flatter, to maximum heights of approximately 35 feet each. Fill-over-cut slopes are proposed within the site to a maximum height of approximately 43 feet.

Details of the future residential structures within the subject development are not known at this time. However, we anticipate that residential structures will consist of slab-on-grade, one- and/or two-story, wood-framed structures yielding relatively light structural loads.

1.3 SITE LOCATION AND DESCRIPTION

The project area comprises roughly 14.1 acres of land in the City of Santa Paula, California. The site is located at the northerly terminus of 10th Street, immediately north of the existing Santa Paula Memorial Hospital facility. The property is bounded by the Santa Paul Memorial Hospital facility to the south, by existing residential developments to the southwest and east, and by vacant hillside terrain to the north and west. The site, in relationship to the surrounding area, is shown on Figure 1, Site Location Map.

The majority of the site is situated on an elevated plateau located northwest of the confluence of the Santa Clara River and Santa Paula Creek. Within the area of proposed construction, the topography varies from relatively flat within the southeastern portion of the site to gently sloping terrain that ascends towards the northwest at a maximum slope ratio of approximately 3:1. Beyond the gently sloping terrain, the northeastern and eastern portions of the site consists of a natural slope that descend as much as approximately 200 feet to the northeast and east at an average slope ratio of 1.5:1 to 2:1 (H:V). However, localized areas as steep as 0.5:1 (H:V) are present along the terrace deposit/bedrock contact near the top of the plateau and along flanks of drainage swales that descend to the bottom of the hillside. Beyond the westerly property boundary, the natural terrain ascends to the northwest at a slope ratio of approximately 2.5:1 to the top of a ridge line at an elevation of approximately 800 msl.

The site has recently been used as an avocado orchard. Existing improvements within the site are limited to some irrigation piping throughout the site, some asphalt paving, and fencing along the northern, southern and western perimeters. In addition, an east-west-trending overhead power line easement cuts across the southern portion of the site and a water tank is present immediately north of the northerly property boundary.

Vegetation within the area of proposed construction consists of a relatively large grove of mature avocado trees. The northerly and easterly descending slope is generally covered with heavy native brush and numerous trees. Evidence of a recent controlled burn was observed within some of the vegetation which has resulted in portions of the slope having relatively sparse vegetation, while others areas are covered with thick growths of vegetation.

NO SCALE N

FIGURE 1 – SITE LOCATION MAP Comstock Homes 75-Home Residential Subdivision

From: USGS 7.5 Minute Santa Paula Peak Quadrangle 1951 (photorevised 1988) & USGS 7.5 Minute Santa Paula Quadrangle

1951 (photorevised 1967)

2.0 INVESTIGATION

2.1 AERIAL PHOTOGRAPHS AND LITERATURE REVIEW

We have reviewed aerial photographs for the site and vicinity dating from April 1970 to April 2005. Based on our review, the site has been used for agricultural purposes from before 1970 through the present.

Geolabs – Westlake Village (Geolabs) prepared a due-diligence geotechnical investigation report and a grading plan review report dated March 21, 2005, and August 10, 2005, respectively, for the site. These reports involved excavation of two exploratory borings with a hollow-stem auger, two exploratory borings with a bucket auger, and excavation of 9 exploratory test pits with a rubber-tire backhoe. In addition, the Geolabs reports included logs from a previous geotechnical study performed by Earth System Southern California. The report prepared by Earth System was not available for our review; however, the logs from Earth System report were included in the Geolabs report. Pertinent exploration data and laboratory test data from the Geolabs report are included herein within Appendix C.

2.2 GEOLOGIC MAPPING

Geologic mapping of the site and surrounding areas was performed to identify existing improvements as well as the aerial distribution of the surficial earth materials within and adjacent the site. The results of our geologic mapping are plotted on the enclosed Geologic Maps, Plates 1 through 8 and Geologic Cross Sections, Plates 9 and 10.

2.3 SUBSURFACE EXPLORATION

Subsurface explorations were performed by engineering geologists from this firm in March and April, 2006. The subsurface exploration involved excavation and down-hole logging of 3 exploratory borings using a bucket auger drill rig and excavation and surface logging of 13 exploratory borings using a hollow-stem-auger drill rig. Depths of the borings varied from approximately 28.5 to 60.0 feet below the existing ground surface. Soil samples of representative earth materials were obtained at selected depths. Visual and tactile identifications were made of the materials encountered, and their descriptions are presented in the Boring Logs, Plates A-1 through A-41. The approximate locations of the exploratory borings by this firm, and the exploratory borings and test pits by others are shown on the Geologic Maps, Plates 1 through 7.

Bulk, Standard Penetration Test (SPT) and relatively undisturbed samples were obtained at selected depths within the exploratory borings for subsequent laboratory testing. Relatively undisturbed samples were obtained using a 3-inch O.D., 2.5-inch I.D., California split-spoon soil sampler lined with brass rings. SPT samples were obtained using a standard SPT soil sampler. When utilizing the hollow-stem auger drill rig, during each sampling interval, the sampler was driven 18 inches with successive drops of a 140- pound automatic hammer. The number of blows required to advancing the split-spoon sampler and SPT sampler was recorded for each six inches of advancement. The total blow count for the lower12 inches of advancement per soil sample is recorded on the boring logs. When utilizing the bucket auger drill rig, the sampler was driven 12 inches with 12-inch drops of the drill rigs kelly bar. The total blow count was recorded on the boring logs. All samples were

placed in sealed containers or plastic bags and transported to our laboratory for analyses. The borings were backfilled with auger cuttings upon completion of sampling.

2.4 LABORATORY TESTING

Selected samples of representative earth materials from the borings were returned to our laboratory for testing. Tests consisted of in-situ moisture and dry density, maximum dry density and optimum moisture content, expansion potential, soluble sulfate content, particle-size distribution, shear strength, Atterberg limits, and consolidation characteristics. Descriptions of laboratory test criteria and summaries of the test results are presented in Appendix B and on the boring logs in Appendix A.

3.0 GEOLOGIC CONDITIONS

3.1 GEOLOGIC SETTING

The project area is located northwest of the confluence of the Santa Clara River and the Santa Paula Creek, in the City of Santa Paula, California. The site is situated on the west flank an elevated alluvial terrace (Qt) associated with the ancestral Santa Paula Creek. Late Pleistocene-age non-marine terrace deposits unconformably overlie bedrock materials of the Saugus Formation. Bedrock beneath the site consists of non-marine sediments of early Pleistocene-age (Dibblee, 1992). Undocumented artificial fills are present within the site related to previous agricultural activities. The distribution of geologic units is shown on the enclosed Geologic Maps (Plates 1 through 8) and Cross Sections (Plates 9 and 10).

3.2 GEOLOGIC UNITS

3.2.1 Non-Engineered Artificial Fill

Non-engineered artificial fill associated with previous agricultural activities is present throughout much of the site. The fill material exposed in our borings were typically damp to very moist, soft to stiff or medium dense to dense, and consisted of clayey silt, silty clay, silt, silty sand with clay, and sandy silt with clay and locally contained rock fragments. Based on our observations, these fills generally range from a few inches to approximately 4 feet in thickness. Due to the relatively thin and sporadic distribution of the non-engineered fill within the site, these materials are not shown on the enclosed Geologic Maps.

3.2.2 Colluvium

Colluvial deposits were generally observed within the drainage swales of the easterly descending slope and thinly mantle the sloping bedrock. These materials are generally comprised of clayey silt and silty sand that are various shades of gray and brown, moist to very moist, soft to firm and porous. Varying amounts of gravels, cobbles and boulders associated with the terrace cap were observed locally within the colluvial materials. The colluvium is estimated to range in thickness from approximately 2 feet to as much as 10 feet within the drainage swales.

3.2.3 Terrace Deposits (Qt)

Late Pleistocene-age terrace deposits underlie the majority of the relatively level portions of the site and cap the underlying bedrock. The upper portions of the terrace deposits consist primarily of silt, clayey silt, sandy silt, silty clay, and sandy clay that are various shades of brown. These deposits are typically damp to very moist, stiff to hard, and have varying degrees of porosity. The lower portion of the terrace deposits consist of silty sand and sand that contain increasing amounts of gravel, cobbles and boulders directly over the bedrock contact. These materials were generally observed to be damp to moist and dense.

3.2.4 Saugus Formation (TQsa)

Early Pleistocene-age Saugas Formation underlies the entire project area. The Saugus Formation contains non-marine sediments that consist of clayey siltstone, siltstone, sandy siltstone, silty sandstone, and sandstone units with some thin clay seams.

The bedrock units were observed to be light brown, reddish-brown, pale olive-gray to olive-brown in color, soft to moderately hard, damp to moist, slightly to moderately weathered, and locally contains some calcium carbonate mineralization along joints.

Where observed, bedding within the Saugus Formation is massive to thinly bedded, but often indistinct with gradational contacts. Cross bedding and scour features were also observed.

3.3 GEOLOGIC STRUCTURE

3.3.1 Bedding and Jointing

Bedding plane surfaces within the sandstone units are generally gradational to moderately-well developed while bedding plane surfaces within the siltstone units are well developed and distinct where in contact with the sandstone. Bedding observed, and as indicated in the referenced geologic publications, typically strikes to the northeast and dips toward the southeast at angles varying from approximately 36 to 64 degrees.

Joint surfaces observed were generally high-angle, dipping toward the northeast, tight and locally contained calcium carbonate mineralization.

3.3.2 Faulting

Our subsurface investigation and review of geologic literature, previous geotechnical reports, and review of topographic expression for the site and near vicinity did not indicate the presence of faulting within or immediately adjacent the site. No faults were mapped within the site, nor is the site located within the boundaries of an Alquist-Priolo Earthquake Fault Zone.

3.4 LANDSLIDES AND SURFICIAL FAILURES

No deep seated landslides were observed within or adjacent the site. Some relatively shallow surficial failures were observed locally in over-steepened portions of the easterly natural slope.

Based on our review of geologic publications, the California Geological Survey has mapped the easterly-descending natural slope within a seismically-induced landslide hazard zone in accordance with the Seismic Hazards Mapping Act. A detailed discussion of our independent slope stability analyses is presented in Sections 4.2 and 5.3 of this report.

3.5 GROUNDWATER

Static groundwater was not encountered to the depths explored during this investigation (up to 60 feet). However, slight seepage was encountered in boring B-1 at a depth of 53.5 feet and locally perched groundwater was encountered in borings HS-1, 2, 4, and 5 near the contact with the bedrock at depths ranging from 20 to 28 feet. Based on our review of available publications and reports, historic high groundwater was estimated to be greater than 40 feet below the ground surface of the lower Santa Paula Creek Valley, which lies approximately 200 feet below the subject site.

4.0 ANALYSES

4.1 SEISMICITY

We have performed integrated historical and deterministic seismic hazard analyses utilizing computer programs *EQSEARCH* (Blake, 1989, updated 2004), *EQFAULT* (Blake, 1989, updated 2002), and *UBCSEIS* (Blake, 1989, updated 2000). A brief description of the programs and their functions are discussed below:

EQSEARCH performs historical seismic analyses that computes estimated ground motions at the site using a catalog of historical earthquake data within a 62-mile (100-km) radius of the site and a selected attenuation relation to model subsurface earth materials similar to the site. The results of analyses can be utilized to estimate how historical earthquakes may have shaken the site.

EQFAULT performs deterministic seismic analyses that computes estimated ground motion of the site using a selected attenuation relation to model earth materials similar to the site and a catalog of up to 222 digitized, 3-D California faults as earthquake sources within a 62-mile (100-km) radius of the site. The results of analyses can deterministically estimate how future earthquakes may shake the site.

UBCSEIS performs an analysis to compute the distance to California faults. The program indicates the type of fault as classified in the 1997 U.B.C. and develops the U.B.C. seismic design parameters based on the selected soil profile type.

Pertinent results from the historical and deterministic seismic hazard analyses are provided below:

Historical Event: Based on the computer program EQSEARCH, the earthquake that occurred on September 24, 1827 appears to have affected the site the most during the past 205 years. This earthquake was located approximately 25.6 miles (41.2 km) from the site and was estimated to be magnitude 7.0. Peak horizontal ground accelerations (PHGA) were estimated for the historical earthquake using Bozorgnia, Campbell and Niazi attenuation equation (1999) for Pleistocene soil

sites. The largest estimated mean PHGA experienced at the site since 1800 is 0.11g (fraction of gravity) with a standard deviation of 0.07g.

Deterministic Event: Based on the computer program EQFAULT and using Bozorgnia, Campbell and Niazi attenuation equation (1999) for Pleistocene soil sites, the largest estimated mean PHGA is 0.64g with a standard deviation of 0.43g, associated with a moment magnitude of 7.0 earthquake along the Onshore segment of the Oak Ridge Fault.

U.B.C. Faults: Based on the computer program UBCSEIS, the closest Type A fault is the San Andreas Fault located approximately 32.3 miles (52.0 km) from the site. The program also indicates the closest Type B fault is the onshore segment of the Oak Ridge Fault located approximately 1.7 miles (2.7 km) from the site.

4.2 SLOPE STABILITY

Geologic cross sections depicting various slope conditions within the site were analyzed with respect to slope stability. Our analyses of gross slope stability included evaluation of representative temporary slopes, the highest fill slope, and representative natural slopes. A specific cross section was not prepared for the highest fill slope. Instead, a generic slope configuration representing the most critical condition anticipated was used in the analyses. Some conditions exist where natural slopes are locally over-steepened and assumed to have inadequate factors of safety and were not analyzed. Analyses for this issue are discussed in Section 4.4. The project will also entail local backcut conditions that will not provide adequate temporary stability and were not specifically analyzed. We have assumed these areas will be shored to maintain the required factors of safety.

The analyses were performed using the computer program Slope/W. Details of the program are provided in Appendix D. Selection of shear strength parameters used in the analyses was based on the results of direct shear tests of representative materials performed by this firm, by direct shear tests reported by previous consultants for the site and previous experience with similar materials. A summary of the values utilized is provided in Table D-1 in Appendix D. A summary of the calculated factors of safety is provided in Table D-2 in Appendix D, and plots of the analyses are presented on Plates D-1 through D-13 in Appendix D. All slopes were analyzed for seismic stability using a pseudo-static factor of 0.15. No increases in shear strength were used for seismic analyses. All slopes analyzed yielded static, temporary, and pseudo-static factors of safety greater than 1.5, 1.25, and 1.1, respectively.

4.3 SETTLEMENT

Engineering analyses were performed to estimate the settlement potential of shallow spread footings anticipated to support proposed residential structures and proposed fills. Our analyses were based on results of consolidation testing of terrace deposits anticipated to underlay the footings and fill. From these tests, we obtained values for primary compression index, recompression index, and preconsolidation pressure. Testing indicates the primary compression index generally ranges from 0.037 to 0.080 with an average of 0.057 and the recompression index generally ranges from 0.006 to 0.013 with an average of 0.008. Tests indicate the terrace deposits are overconsolidated although the degree of overconsolidation varied depending on the quality of the sample. The average extent of overconsolidation from samples of reasonable quality suggest a value of about 1100 psf over the in-

situ stress. The higher-quality samples suggest values of 1800 to 2300 psf over the in-situ stress. Samples taken from the upper 7 feet indicate even greater overconsolidation apparently due to cyclic drying and wetting but these higher degrees of overconsolidation were ignored. From the test data, we used the average primary compression index of 0.057 and a recompression index of 0.008. The preconsolidation pressure was assumed to be at least 1875 psf which represents an overburden of about 15 feet. This thickness is consistent with a conservative geologic model of erosion from the mesa.

For analysis of a typical footing, the stress distribution was based on a Boussinesq distribution below the center of the footing. To account for the three-dimensional effects of the stress distribution, calculated settlements were multiplied by a rigidity factor of 0.7. Using a footing 1.25 feet wide, embedded 1.5 feet, and carrying a bearing pressure of 2000 psf, we estimate a total settlement of approximately 0.12 inches. A summary of this calculation is provided on Plate E-1 in Appendix E. Contribution from soils located below a depth where the incremental stress increase is less than 10% of the applied stress was ignored.

Settlement of the terrace deposit due to the weight of proposed fills was analyzed where the proposed fill is the thickest. This condition occurs at Lot 66 where the proposed fill will be approximately 24 feet at the top of the slope. The thickness of the fill decreases away from the slope and down the slope face and forms the general shape of a triangular load having a base width of about 225 feet. For the analysis, a peak thickness of 20 feet for this triangular load was selected in consideration of the three-dimensional effects of the fill along the slope. The stress distribution was based on a Boussinesq distribution below the peak of the triangular load created by the fill. Using the compression indices and preconsolidation pressure discussed above, we obtain a total settlement of 2.3 inches. A summary of this calculation is provided on Plate E-2 in Appendix E. Another similar analysis was performed at a location 30 feet from the peak of the load to evaluate differential settlement. At this location, we obtain a total settlement of 1.9 inches. A summary of this calculation is provided on Plate E-3 in Appendix E.

4.4 SHEAR PIN DESIGN

Engineering analyses were performed to develop design parameters for shear pins (soldier pile) that can be used to provide supplemental support to the over-steepened natural slope supporting Lots 23 through 25 and 28 through 30. The anticipated locations of the shear pins are indicated on the Geologic Maps, Plates 4, 5, 8 and 9. Although conditions along the bluff vary considerably, we have based our design on the worst case condition which entails a slope of about ½ to 1 (H:V) for a height of approximately 25 feet. Below this, we have assumed the slope is approximately 2 to 1 (H:V). A general cross section detail of this condition is provided on Plate E-5 in Appendix E. The load that will be applied to the piles was determined from the greater force resulting from limit equilibrium stability analyses or the active pressure exerted by the retained soil. The piles were modeled as having a column section above the potential failure surface and an embedded section below the potential failure surface. The lateral load required to achieve a static and seismic factor of safety of at least 1.5 and 1.1, respectively, were calculated from the stability analysis. The analysis of stability is provided on Plates E-7 and E-8 in Appendix E. The resulting force is assumed to act on the column section at a height equal to 1/3 of the distance above the failure plane. The active pressure acting on the portion above the potential failure plane was also calculated and found to slightly exceed the force derived by the stability analysis. The analysis of the active pressure force is provided on Plate E-6 in Appendix E. Based on the active pressure loading configuration, the allowable lateral capacity of a 30-inch-diameter concrete pile with a total length of 34 feet was developed using the elastic method proposed Poulos (1976) for piles adjacent slopes. A summary of this analysis is provided on Plate E-9 in Appendix E. The results indicate this pile configuration can provide a lateral capacity of 40 kips with an estimated lateral deflection of approximately 0.8 inches.

5.0 CONCLUSIONS

5.1 FEASIBILITY OF PROPOSED DEVELOPMENT

From a geotechnical point of view, the proposed site development is considered feasible provided the recommendations presented in this report are incorporated into the design and construction of the project. It is also our opinion that the proposed development will not adversely impact the stability of adjoining properties if the recommendations presented in this report are incorporated in the site development.

5.2 GEOLOGIC HAZARDS

5.2.1 Ground Rupture

No known active faults are known to project through the site nor does the site lie within the bounds of an "Earthquake Fault Zone" as defined by the State of California in the Alquist-Priolo Earthquake Fault Zoning Act. The potential for ground rupture due to an earthquake beneath the site is considered very small.

5.2.2 Ground Shaking

The site is in a seismically active area that has historically been affected by generally moderate to occasionally high levels of ground motion. The site lies in relative close proximity to several active faults; therefore, during the life of the proposed development, the property will probably experience similar moderate to occasionally high ground shaking from these fault zones, as well as some background shaking from other seismically active areas of the southern California region. Potential ground accelerations have been determined for the site and are presented in Section 4.1 of this report. Structural designs should consider the potential for ground accelerations as discussed herein.

5.2.3 Liquefaction

Engineering research of soil liquefaction potential (Youd, et al., 2001) indicates that generally three basic factors must exist concurrently in order for liquefaction to occur. These factors include:

- A source of ground shaking, such as an earthquake, capable of generating soil mass distortions.
- A relatively loose, non-cohesive, silty and/or sandy soil.
- A relative shallow groundwater table (within approximately 50 feet below ground surface) or completely saturated soil conditions that will allow positive pore pressure generation.

Current groundwater is estimated to be more than 200 feet below the ground surface. Future site development could result in some minor perched water forming on the bedrock contact within the sandy/gravely terrace deposits. However, blow counts of the lower terrace deposits are relatively high and are generally not considered susceptible to liquefaction. Therefore, liquefaction is unlikely at the site.

5.2.4 Landslides

The California Geological Survey has mapped the easterly-descending natural slope within a seismically-induced landslide hazard zone in accordance with the Seismic Hazards Mapping Act. A detailed slope stability analysis including pseudo-static analyses has been conducted for the site and is summarized herein. Provided the recommendations presented in this report are incorporated in the site development, geologic hazards associated with deep seated landslides are not anticipated. However, localized surficial failures have occurred within over-steepened portions of the natural slopes and similar events are anticipated to occur over time within the steep terrain as a result of inclement weather and/or seismic events. Construction of containment barriers or debris walls within significant natural collection areas such as drainage swales or near the base of the natural slope can be implemented to mitigate the potential for adverse impacts associated with the downward migration of earth materials on sloping terrain.

5.2.5 Seiche and Tsunami

The site is elevated more than 1000 feet above sea level and is located a substantial distance from any significant body of water. As such, the potential for any hazards related to seiche and tsunami are considered remote.

5.3 SLOPE STABILITY

Analyses were performed to evaluate various temporary, natural, and permanent slope configurations as previously discussed in Section 4.2. Nearly all these slopes will provide the appropriate calculated factors of safety. The exceptions to this consist of locally over-steepened slopes at the top of the natural bluff and one temporary backcut anticipated for construction of a retaining wall in Lots 70 through 72. With regard to the bluff stability, the current grading plans do not accurately depict the over-steepened conditions that exist near the top of the bluff in some locations. This condition appears to be due to effects in the photogramic from thick vegetation in the areas. Based on our field observations, the worst condition appears to be oversteepened slopes up to 25 feet in height at a maximum gradient of ¹/₂ to 1 (H:V). Analysis for this geometry indicate the installation of a shear pin at the top of slope can adequately mitigate the condition. The shear pins can consist of a 30-inch-diameter concrete pile having a total length of 34 feet below current grades and spaced 10 feet center to center. The anticipated locations of these pins are indicated on the Geologic Map, Plates 4, 5, 8 and 9. Where the temporary backcut at Lots 70 though 72 are present, the backcut will generally require the installation of temporary shoring between the walls and the property line. Specific design parameters can be provided to a consultant who specializes in the design of shoring systems.

5.4 SETTLEMENT

Analyses indicate anticipate shallow spread footings are not anticipated to undergo a total settlement greater than ¼ inch when supported by either compacted fill or competent terrace deposits. Differential settlement of the footings is not anticipated to exceed ½ of the total settlement. Terrace deposits are anticipated to undergo some settlement due to the weight of proposed fills. Our analyses suggest a total settlement of up to approximately 2 ½ inches. The analyses also indicate the related differential is not expected to be more than ½ inch over 30 feet. Since the terrace deposits are generally partially saturated, the primary consolidation process is anticipated to occur very rapidly during loading. Assuming the secondary component of settlement would comprise about 1/3 of the total calculated settlement over a period of 50 years, post-construction total and differential settlement due to the foundation load with settlement of terrace deposits due to fill loads, we obtain an overall maximum total and differential settlement of 1 ¼ inches and 3/8 inches over 30 feet, respectively. These values are considered within the tolerable limits of proposed site development.

5.5 EXCAVATION AND MATERIAL CHARACTERISTICS

Based on the results of our subsurface exploration, the onsite near surface soil materials should be readily excavated with conventional earth moving equipment. Typical terrace deposits have moisture contents at or slightly over optimum and should therefore require only minor drying or addition of water during grading. Portions of the terrace deposits located near the contact with bedrock (typically 20 feet or more below current ground surface) will contain significant amounts of cobbles.

5.6 SHRINKAGE, BULKING AND SUBSIDENCE

Volumetric changes in earth quantities will occur when excavated onsite soil materials are replaced as properly compacted fill. We estimate existing non-engineered artificial fill and terrace deposit materials will shrink approximately 1% to 6%. Significant excavations within bedrock materials are not anticipated within the site. Subsidence from scarification and recompaction of exposed surfaces is expected to be negligible.

The above estimates of shrinkage and subsidence are intended as an aid for project engineers in determining earthwork quantities. However, these estimates should be used with some caution since they are not absolute values. Contingencies should be made for balancing earthwork quantities based on actual shrinkage and subsidence that occurs during the grading.

6.0 **RECOMMENDATIONS**

6.1 EARTHWORK

6.1.1 General Earthwork and Grading Specifications

All earthwork and grading should be performed in accordance with all applicable requirements of the grading codes of the City of Santa Paula, California and CALOSHA, in addition to recommendations presented herein.

6.1.2 **Pre-Grade Meeting and Geotechnical Observation**

Prior to commencement of rough grading, we recommend a meeting be held between the owner, City Inspector, grading contractor, civil engineer, and geotechnical consultant to discuss proposed work and logistics.

We also recommend that a geotechnical consultant be retained to provide soil engineering and engineering geologic services during site grading. This is to observe compliance with the design specifications or recommendations, and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction. If conditions are encountered during construction that appears to be different than those indicated in this report, the project geotechnical consultant should be notified immediately. Design and construction revisions may be required.

6.1.3 Site Clearing

All vegetation and other deleterious materials should be removed from the site. The project geotechnical consultant should be notified at the appropriate times to provide observation services during clearing operations to verify compliance with the above recommendations. Voids created by clearing should be left open for observation by the geotechnical consultant. Should any unusual soil conditions or subsurface structures be encountered during site clearing and/or grading that are not described or anticipated herein, these conditions should be brought to the immediate attention of the project geotechnical consultant for corrective recommendations.

6.1.4 Ground Preparation

All existing artificial fill (Qaf) and the upper 5 to 7 feet of the terrace deposits (Qt) are considered unsuitable for support of proposed fills and site development. These materials should be removed to expose competent terrace deposits. Estimated depths of unsuitable earth materials, based on subsurface exploration conducted by Geolabs, Inc., and during this investigation, are indicated on the Geologic Maps, Plates 1 through 8. The actual depths of removal should be evaluated in the field by a representative of this office based on actual conditions exposed during grading.

Exploratory trenches excavated by Geolabs were backfilled without compaction. As such, backfill in these trenches should be removed and replaced with compacted fill.

Where removals are limited by existing structures or property lines, special grading techniques, such as slot cutting, or other acceptable design criteria may be required. Under such conditions, specific recommendations should be provided by this office.

6.1.5 Lot Capping

Transition Lots: Proposed rough grading will create cut/fill transitions or shallow fill conditions within building pads. The cut and/or shallow fill portions of these lots should be overexcavated at least 3 feet below finish pad grades and replaced with a compacted fill blanket. The overexcavation should extend across the entire lot. A transition lot capping detail is provided on Plate E-1, Appendix E.

Cut Lots: Due to the potential variability of materials beneath the site, some cut lots may expose materials with differing expansion characteristics. Cut lots that will support structures should be brought to near rough grade then observed by the geotechnical consultant. If significant differential materials are exposed, the lot should be overexcavated and replaced with fill. Generally, the overexcavation will be 3 feet below finish pad grades. The overexcavation should extend across the entire lot. A cut lot capping detail is provided on Plate E-2, Appendix E. The geotechnical consultant should provide final recommendations for cut lot overexcavation during grading.

6.1.6 Fill Placement

Onsite earth materials may be re-used as compacted fill provided they are clear of debris, vegetation, and particles exceeding 6 inches in diameter. Asphalt debris generated during site demolition can likely be reduced to no more than 6 inches in maximum dimension and incorporated within fill soils during earthwork operations. Following removals, the exposed grade should first be scarified to a depth of 6 inches to 8 inches, watered or air-dried as necessary to achieve a uniform moisture content slightly over optimum, and then recompacted to at least 90% of the laboratory standard. All fill should be placed in lifts no greater than 6 to 8 inches in loose thickness, watered as necessary to achieve a uniform moisture content to 110 and 125 percent of optimum moisture content, then compacted in place to at least 90 percent of the laboratory standard. Each lift should be treated in a similar manner. Subsequent lifts should not be placed until the project geotechnical consultant has approved the preceding lift.

If imported soils are required to bring the site to proposed grades, imported soils should have a maximum particle size of 4 inches and have an expansion index (EI) less then 50. Potential import soils should be sampled by the geotechnical consultant at the source, if possible, tested for expansion and maximum density, and approved by the geotechnical consultant prior to being used.

The laboratory standard for maximum dry density and optimum moisture content for each soil type used should be determined in accordance with ASTM D 1557.

Fills should be maintained relatively level and should not slope more than 20 to 1 (H:V). Where fills will be placed on ground that slopes at 5 to 1 (H:V) or greater, the ground surface should be excavated to create a series of level benches prior to placement of fill.

6.1.7 Temporary Excavations

Temporary construction slopes in site materials may be cut vertically up to a height of 4 feet. Temporary slopes over 4 feet in site materials should be layed back at a maximum gradient of 1 to 1 or properly shored. Limited portions of site materials may be relatively dry and cohesionless and as such, may be prone to sloughing and possible caving. Excavations should not be left open for prolonged periods of time. Where practical, hydraulic shoring with appropriate lagging may be utilized for vertical utility trench excavations up to 10 feet in depth. The project geotechnical consultant should observe all temporary cuts to confirm anticipated conditions and to provide alternate recommendations if conditions dictate. All trench excavations should conform to the requirements of CALOSHA.

Temporary excavations for the retaining wall construction on Lots 70 through 72 will require temporary shoring to maintain proper stability. A specialist in shoring should be retained to prepare appropriate shoring plans. This office should coordinate with the selected specialist to provide appropriate shoring design parameters based on the anticipated shoring system and configuration.

6.1.8 Fill Slopes

Fill slopes (fill over natural slopes, fill over cut slopes) should be constructed with a keyway having a minimum width of 15 feet and a minimum embedment of 2 feet into competent terrace deposits. A minimum fill thickness of approximately 10 to 15 feet should be maintained throughout fill slope construction to mitigate against sliver fills and cut/fill transitions within finished slopes. Details for fill slope construction are presented on Plate E-4.

Where practical, fill slopes should be constructed by over filling and trimming to a compacted core. The face of slopes that are not over-built should be backrolled with a sheepsfoot roller at least every 4 vertical feet of slope construction. The process should provide compacted fill to within 12 inches of the slope face. Finished slopes should be track-walked with a small dozer or rolled with a vibratory compactor and grid roller in order to compact the slope face. The slope face materials will tend to dry out prior to final face compaction. As such, the addition of water to the slope face will likely be required prior to compaction to achieve the required degree of compaction at the time of slope face compaction.

6.1.9 Cut Slopes

All cut slopes should be inspected by an engineering geologist at intervals not exceeding 10 vertical feet during rough grading to evaluate the competency of the slope.

6.1.10 Sliver Cut/Sliver Fill Slopes

For sliver cut or thin fill conditions it is recommended that a backcut and keyway be established such that a minimum fill thickness of 10 feet is maintained for all sliver fill conditions. Where the design cut is insufficient to remove all unsuitable materials, overexcavation and replacement with a stabilization fill will be required.

6.1.11 Stabilization Fills

Cut slopes exposing unsuitable surficial soils may require replacement with stabilization fill slopes. General details for stabilization fill slope construction are presented in Appendix E, Plate E-5. However, specific recommendations should be provided by the geotechnical consultant during grading depending on the actual conditions exposed.

6.1.12 Slope Backdrains

Slope backdrains are generally recommended in fill key excavations and stabilization fill slopes. The locations and necessity of slope backdrains will be determined by the project geotechnical consultant in the field during rough grading. General details for slope backdrains are presented in Appendix E, Plate E-6.

6.2 SHEAR PINS FOR NATURAL SLOPES

As discussed in Section 5.3, portions of the natural bluff slope are unstable. Although differing systems may be employed, we have assumed the condition will be mitigated by the installation of shear pins. Unless another system is employed, the shear pins should consist of piles having a diameter of 30 inches and a length of 34 feet as measured from the existing grade. The piles should be spaced no more than 10 feet center to center at the locations indicated on the Geologic Maps, Plates 4, 5, 8, and 9. A specific structural plan should be prepared by a structural engineer familiar with such systems. Detailed loading diagrams for shear and moment should be provided by this office for the structural engineer.

6.3 CONTAINMENT BARRIERS OR DEBRIS WALLS

Construction of containment barriers and/or debris walls should be implemented to mitigate the potential for adverse impacts associated with the downward migration of earth materials (debris flows) within the easterly natural slope. The topographic expression shown on the base map for the referenced rough grading plans does not provide adequate resolution within the easterly natural slope areas due to thick brush cover. As such, we are unable to determine appropriate locations and design parameters for the recommended containment barriers and/or debris walls. Additional survey control and photogramic resolution is currently being acquired for the site to provide more accurate topographic information. A separate report summarizing our review of the site topography, geotechnical conditions associated with debris flow potential and recommended mitigation measures will be submitted under separate cover.

6.4 SEGMENTAL RETAINING WALLS

The rough grading plans indicate that mechanically reinforced segmental retaining walls up to 21 feet high will be constructed within the site during rough grading operations. At this time, the wall profiles are not available for our review. As such, design criteria for these walls cannot be prepared at this time. The geotechnical consultant should evaluate future segmental wall profiles and determine the geogrid type, spacing and embedment lengths, as well as backcut criteria and drainage requirements prior to wall construction. Segmental wall designs should include analyses of internal, external, and global wall stability with consideration of proposed site improvements. Segmental wall designs should follow the guidelines outlined in the most current edition of the National Concrete Masonry Association Manual.

Backfill materials considered suitable for use behind the proposed segmental retaining walls is limited within the site. Therefore, it may be necessary to mine these materials from the lower portions of the terrace deposits. Based on our subsurface exploration, these materials will be most readily available within the eastern portion of the site. Temporary excavations created during any mining operations within the site should be evaluated by this firm. Additional overexcavations of building pads may be required to mitigate the potential for differential settlement.

6.5 EROSION PROTECTION FOR SLOPES

Surface drainage should be directed in a non-erosive manner away from the tops of all slopes and retaining walls (masonry or segmental). Until permanent vegetation is established, slopes should be provided with short-term erosion protection such as jute matting, polymer applicants or other approved erosion control devices. The project landscape architect should provide specific recommendations for erosion protection.

6.6 SEISMIC DESIGN PARAMETERS

For design of the project in accordance with Chapter 16 of the 2001 C.B.C., the following table presents the seismic design factors:

Parameter	Value	
Seismic Zone Factor, Z	0.4	
Soil Profile Type, S	S _D	
Near Source Factor, Na	1.2	
Near Source Factor, Nv	1.5	
Seismic Coefficient, Ca	0.54	
Seismic Coefficient, Cv	0.96	

TABLE 6.1C.B.C. Seismic Design Parameters

6.7 POST GRADING CONSIDERATIONS .

6.7.1 Site Drainage

Drainage should be designed to carry surface water away from all structures in accordance with local code requirements. No rain or excess water should be allowed to pond against building walls or foundations. We recommend that landscape areas drain to proper facilities at a minimum gradient of 2%. Sufficient area drains should be provided to ensure water does not pond.

6.7.2 Utility Trenches

All utility trench backfill should be compacted to at least 90 percent of the laboratory standard. Trench backfill should be brought to a uniform moisture slightly over optimum, placed in lifts no greater than 12 inches in thickness, and then mechanically compacted with appropriate equipment to at least 90 percent of the laboratory standard. For deep trenches with sloped walls, backfill material should be placed in lifts no greater than 8 inches in thickness, and then compacted by rolling with a sheepsfoot tamper or similar equipment. The project geotechnical consultant should perform density testing, along with probing, to verify adequate compaction.

Within shallow trenches (less than 18 inches deep) where pipes may be damaged by heavy compaction equipment, such as under building floor slabs, imported clean sand having a Sand Equivalent (SE) of 30 or greater may be utilized. The sand should be placed in the trench, thoroughly moistened, and then compacted with a vibratory compactor.

Where utility trenches are proposed parallel to any building footing (interior and/or exterior trenches), the bottom of the trench should not be located below a 1:1 (H:V) plane projecting downward from the outside edge of the adjacent footing base. For utility trenches located below a 1:1 (H:V) plane projecting downward from the outside edge of the adjacent footing base or crossing footing trenches, concrete or slurry should be used as trench backfill.

Site conditions are generally not considered suitable for flooding or jetting of backfill materials, unless the bottoms of the trenches extend into the granular soils. The project geotechnical consultant should verify suitable conditions in each case if jetting and flooding is to be considered.

6.8 **PRELIMINARY FOUNDATION DESIGN**

6.8.1 Soil Expansion

The recommendations presented herein for post-tension foundation systems are based on soils with a Medium expansion potential. Following site grading, additional testing of site soils should be performed by the project geotechnical consultant to confirm the existing expansion potential for the site. If site soils with significantly different expansion potentials are encountered, the recommendations contained herein may require modification.

6.8.2 Settlement

Foundations should be designed for total and differential settlement up to $1 \frac{1}{4}$ inch and $\frac{1}{2}$ -inch over 30 feet, respectively.

6.8.3 Allowable Bearing Value

A bearing value of 1,500 pounds per square foot may be used for continuous beams founded at a minimum depth of 12 inches below the lowest adjacent grade. The recommended allowable bearing value includes both dead and live loads, and may be increased by one-third for wind and seismic forces.

6.8.4 Lateral Resistance

A passive earth pressure of 250 pounds per square foot per foot of depth up to a maximum value of 1000 pounds per square foot may be used to determine lateral bearing for beams. A coefficient of friction of 0.30 times the dead load forces may also be used between concrete and the supporting soils to determine lateral sliding resistance. An increase of one-third of the above values may also be used when designing for wind and seismic forces.

The above values are based on beams placed directly against competent native soils or compacted fill. In the case where beam sides are formed, all backfill against the beams should be compacted to at least 90 percent of the laboratory standard.

6.8.5 Foundation Setbacks

The bottom outer edge of foundations located adjacent a top of slope should be setback from the slope face a horizontal distance of at least 1/3 the height of the slope. The horizontal distance should not be less than 7 feet but need not exceed 40 feet.

6.8.6 Beam Dimensions

Perimeter edge beams for both one-story and two-story structures should be founded at a minimum depth of 15 inches below the lowest adjacent final ground surface. Interior beams may be founded at a minimum depth of 12 inches below the tops of the finish floor slabs.

6.8.7 Slab on Grade

The thickness of the floor slabs should be determined by the project structural engineer with consideration of the requirements of UBC 1816; however, we recommend a minimum slab thickness of 4.5 inches.

All dwelling area floor slabs constructed on-grade should be underlain with a moisture vapor barrier consisting of a polyvinyl chloride membrane such as 10-mil Visqueen or equivalent. A minimum of two (2) inches of clean sand having an SE of at least 30 should be placed over the membrane to promote uniform curing of the concrete. This vapor barrier system is anticipated to be suitable for most flooring finishes that can accommodate some vapor emissions. However, this system may emit more than 4 pounds of water per 1000 sq. ft. and therefore, may not be suitable for all flooring finishes. Additional steps should be taken if such vapor emission levels are too high for anticipated flooring finishes.

Pre-saturation of the subgrade below floor slabs will not be required; however, prior to placing concrete, the subgrade below all dwelling and garage floor slab areas should be thoroughly moistened to achieve a moisture content that is at least 110 percent over the optimum moisture content. This moisture content should penetrate to a minimum depth of 12 inches below the bottoms of the slabs.

Design in accordance with 1997 UBC Section 1816, may be based on the following parameters:

Parameter	Value
% Clay (portion passing No. 200 sieve)	50
Plastic Index	25
Plastic Limit	20
Clay Type	Montmorillonite
Depth to Constant Soil Suction (feet)	5
Constant Soil Suction (pF)	3.6
Velocity of Moisture Flow (in./mo.)	0.5
Subgrade Modulus (pci)	150

TABLE 6.2Post-Tension Design Parameters

Values for e_m may be estimated from Figure 18-III-14 of the UBC based on the selected Thornthwaite moisture index. Although the UBC indicates a Thornthwaite index of -20, consideration should be given to non-climatic factors such as irrigation practices that could affect the assumed value. Values for y_m may utilize Table 18-III based on the parameters provided in the table

above and the estimated e_m . Using a Thornthwaite index of -20, the e_m and y_m values are summarized below:

Edge Lift Moisture Variation Distance, e _m	2.6 feet
Edge Lift, y _m	0.316 inches
Center Lift Moisture Variation Distance, em	5.3 feet
Center Lift, y _m	1.360 inches

6.9 **RETAINING WALLS**

6.9.1 Allowable Bearing Value

For footings located at least 7 feet horizontally from the face of a slope as measured from the bottom of footing, a bearing value of 2000 pounds per square foot (psf) may be used for continuous and isolated footings founded at a minimum depth of 12 inches below the lowest adjacent grade. Continuous and isolated footings should also have a minimum width of 12 and 24 inches, respectively. The above bearing value may not be increased for additional width or depth. Recommended allowable bearing values include both dead and live loads, and may be increased by one-third for wind and seismic forces.

6.9.2 Lateral Resistance

For footings located at least 7 feet horizontally from the top of a slope as measured from the top of slope to the footing face, a passive earth pressure of 250 pounds per square foot per foot of depth up to a maximum value of 1500 pounds per square foot may be used to determine lateral bearing for footings. A coefficient of friction of 0.33 times the dead load forces may also be used between concrete and the supporting soils to determine lateral sliding resistance. An increase of one-third of the above values may also be used when designing for wind and seismic forces.

Where the footing is within 7 feet horizontally of a descending slope as measured from the top of slope to the footing face, a passive earth pressure of 80 pounds per square foot per foot of depth up to a maximum value of 1500 pounds per square foot may be used to determine lateral bearing for footings. A coefficient of friction of 0.33 times the dead load forces may also be used between concrete and the supporting soils to determine lateral sliding resistance. An increase of one-third of the above values may also be used when designing for wind and seismic forces.

The above values are based on footings placed directly against competent native soils or compacted fill. In the case where footing sides are formed, all backfill against the footings should be compacted to at least 90 percent of the laboratory standard.

6.9.3 Footing Reinforcement

All continuous footings should be reinforced with a minimum of two No. 4 bars, one top and one bottom. The structural engineer may require different reinforcement and should dictate if greater than the recommendations herein. Where recommended removals are limited due to space restrictions, greater reinforcement may be recommended. Specific recommendations should be provided by the geotechnical consultant during grading based on as-built conditions exposed in the field.

6.9.4 Footing Observations

All footing trenches should be observed by the project geotechnical consultant to verify that they have been excavated into competent bearing soils and to the minimum embedment recommended herein. These observations should be performed prior to placement of forms or reinforcement. The excavations should be trimmed neat, level and square. All loose, sloughed or moisture-softened materials and debris should be removed prior to placing concrete.

6.9.5 Earth Pressures

Conventional retaining walls should be designed for the pressures as indicated in the table below. The values are based on typical onsite materials as well as on drained backfill conditions and do not consider hydrostatic pressures. Relatively clayey materials should not be used for wall backfill. All walls should be designed to support any adjacent structural surcharge loads imposed by other nearby walls or footings in addition to the earth pressures provided in the table below.

Backfill Condition	Active Pressure Wall Height up to 6 feet (pcf)	Active Pressure Wall height over 6 feet and under 15 feet (pcf)	Restrained Walls all Heights (pcf)
Level	35	45	70
2 to 1 slope	63	81	105

TABLE 6.3Earth Pressures

6.9.6 Drainage and Moisture-Proofing

All retaining walls should be constructed with a perforated pipe and gravel subdrain to prevent entrapment of water in the backfill. The perforated pipe should consist of 4-inch diameter, ABS SDR-35 or P.V.C. Schedule 40 with the perforations laid down. The pipe should be embedded in ³/₄- to 1¹/₂-inch open-graded gravel wrapped in filter fabric. The gravel should be at least one foot wide and extend at least one foot up the wall above the footing. Where walls will be located at the grade splits inside the homes, the gravel should extend up to within 12 inches of the finish grade. Filter fabric should consist of Mirafi 140N, or equal. Non-perforated drain outlets should be provided at a minimum of every 100 linear feet. Outlet pipes should be directed to positive drainage devices, such as graded swales, and/or area drains.

The use of weepholes may be considered in locations where aesthetic issues from potential nuisance water are not a concern. Weepholes should be 2 inches in diameter and provided at least every 6 feet on center. Where weepholes are used, perforated pipe may be omitted from the gravel subdrain.

Retaining walls supporting backfill should also be coated with a waterproofing compound or covered with such material to inhibit infiltration of moisture through the walls. Waterproofing

material should cover any portion of the back of wall that will be in contact with soil and should lap over and cover the top of footing. The top of footing should be finished smooth with a trowel to inhibit the infiltration of water through the wall. The project structural engineer should provide specific recommendations for waterproofing, water stops, and joint details.

6.9.7 Retaining Wall Backfill

Most onsite soils may be used for backfill of retaining walls. However, clayey materials with an EI over 50 should not be used for wall backfill. The project geotechnical consultant should approve all backfill used for retaining walls. All wall backfill should be brought to relatively uniform moisture content slightly over optimum, placed in lifts no greater than 12 inches in thickness, and then mechanically compacted with appropriate equipment to at least 90 percent of the laboratory standard. Flooding or jetting of backfill material is not recommended.

6.10 CEMENT TYPE

Laboratory testing of site soils indicates **negligible** soluble sulfate content. We recommend following the procedures provided in 2001 C.B.C. Section 1904.3.1 and Table 19-A-4 for negligible sulfate exposure. Upon completion of rough grading, an evaluation of as-graded conditions and further laboratory testing should be completed for the site to confirm or modify the recommendations provided in this section.

6.11 EXTERIOR FLATWORK

Exterior flatwork should be a minimum 4 inches thick. Cold joints or saw cuts should be provided at least every 7 feet in each direction. Cold joints should be keyed or provided with dowels spaced 18 inches on center. Special jointing detail should be provided in areas of block-outs, notches, or other irregularities to avoid cracking at points of high stress. Subgrade soils below flatwork should be thoroughly moistened to a moisture content of at least 120 percent of optimum to a depth of 12 inches. Moistening should be accomplished by lightly spraying the area over a period of a few days just prior to pouring concrete.

The geotechnical consultant should observe and verify the density and moisture content of subgrade soils prior to pouring concrete to ensure that the required compaction and pre-moistening recommendations have been met.

Drainage from flatwork areas should be directed to local area drains and/or other appropriate collection devices designed to carry runoff water to the street or other approved drainage structures. The concrete flatwork should also be sloped at a minimum gradient of 2% away from building foundations and masonry walls.

6.12 PRELIMINARY PAVEMENT RECOMMENDATIONS

6.12.1 Subgrade Preparation

Prior to placement of pavement elements, the upper 12 inches of subgrade soils should be moistureconditioned to at least 110 percent of the optimum moisture content and compacted to at least 90 percent of the laboratory standard. Areas observed to pump or yield under vehicle traffic should be removed and replaced with firm and unyielding compacted soil or aggregate base materials.

6.12.2 Preliminary Pavement Design

Based on the soil conditions present at the site and estimated traffic indexes, preliminary pavement sections are recommended in the table below. For preliminary design purposes, an "R"-value of 5 was used to determine the pavement design criteria presented below. The sections presented below are for planning purposes only and should be re-evaluated subsequent to site grading. Final pavement sections should be based on actual R-value testing of in-place soils and analysis of anticipated traffic.

Location	Traffic Index	Asphalt Concrete (inches)	Aggregate Base (inches)
10 th Street	6.0	4.0	13.0
All other interior streets	5.5	3.5 4	12.0 10.0

TABLE 6.3Flexible Pavement Sections

6.12.3 Pavement Materials

Aggregate base materials should be either Crushed Aggregate Base, Crushed Miscellaneous Base, or Processed Miscellaneous Base conforming to Section 200-2 of the Standard Specification for Public Works Construction (Greenbook). The materials should be brought to a uniform moisture content near optimum then compacted to at least 95 percent of ASTM D1557-91. Asphalt concrete materials and construction should conform to Section 203 of the Greenbook.

7.0 PLAN REVIEW AND CONSTRUCTION SERVICES

We recommend *Albus-Keefe & Associates, Inc.*, be engaged to review the final grading and foundation plans prior to construction. This is to verify that the recommendations contained in this report have been properly interpreted and are incorporated into the project specifications. If we are not provided the opportunity to review these documents, we take no responsibility for misinterpretation of our recommendations.

We recommend that a geotechnical consultant be retained to provide soil engineering services during construction of the project. These services are to observe compliance with the design, specifications or recommendations, and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

If the project plans change significantly, the project geotechnical consultant should review our original design recommendations and their applicability to the revised construction. If conditions are encountered during construction that appears to be different than those indicated in this report, the project geotechnical consultant should be notified immediately. Design and construction revisions may be required.

8.0 INVESTIGATION LIMITATIONS

This report is based on the proposed development and geotechnical data as described herein. The materials encountered on the project site, described in other literature, and utilized in our laboratory testing for this investigation are believed representative of the total project area, and the conclusions and recommendations contained in this report are presented on that basis. However, soil materials can vary in characteristics between points of exploration, both laterally and vertically, and those variations could affect the conclusions and recommendations contained herein. As such, observation and testing by a geotechnical consultant during the grading and construction phases of the project are essential to confirming the basis of this report.

This report has been prepared consistent with that level of care being provided by other professionals providing similar services at the same locale and time period. The contents of this report are professional opinions and as such, are not to be considered a guaranty or warranty.

This report has been prepared for the exclusive use of **Comstock Homes** to assist the project consultants in the design of the proposed development. This report has not been prepared for use by parties or projects other than those named or described herein. This report may not contain sufficient information for other parties or other purposes.

This report should be reviewed and updated after a period of one year or if the site ownership or project concept changes from that described herein.

This report is subject to review by the controlling governmental agency.

Sincerely yours

ALBUS-KEEFE & ASSOCIATES, INC.

Michael Putt Project Engineering Geologist C.E.G. 2341

L'IM/K

Patrick M. Keefe Principal Engineering Geologist C.E.G. 2022

Principal Engineer G.E. 2455 Exp. 12-31-06

REFERENCES

Publications

- Blake, T.F., 1989, 2002, Eqfault, A Computer Program for the Deterministic Prediction of Peak Horizontal Acceleration from Digitized California Faults.
- Blake, T.F., 1989,2004, Eqsearch, A Computer Program for the Estimation of Peak Horizontal Acceleration from Southern California Historical Earthquake Catalogs.
- C.D.M.G. Open-File Report 92-03, 1992, Preliminary Fault Activity Map of California.
- Dibblee, T.W. Jr., 1990, Geologic Map of the Santa Paula Peak Quadrangle, Ventura County, California, DF-26
- Dibblee, T.W. Jr., 1992, Geologic Map of the Santa Paula Quadrangle, Ventura County, California, DF-41
- Hart, E.W., Revised 1997, Fault-Rupture Hazard Zones in California, C.D.M.G. Special Publication 42.
- Seed, H. Bolton, Idriss, I.M., and Kiefer, Fred W., 1968, Characteristics of Rock Motions During Earthquakes, E.E.R.I. 68-5.
- State of California, Earthquake Fault Zones, San Fernando Quadrangle, Scale: 1:24,000, Effective January 1, 1979.
- State of California, Department of Conservation, Division of Mines and Geology, Seismic Hazard Zone Report for the San Fernando 7.5-Minute Quadrangle, Los Angeles County, California, 1998, Seismic Hazard Zone Report 015.
- State of California, Department of Conservation, Division of Mines and Geology, Seismic Hazard Zones, San Fernando Quadrangle, dated March 25, 1999.
- U.S.G.S. Topographic Map, 7.5 Minute Series, Santa Paula Peak Quadrangle, 1951, photorevised 1988.
- U.S.G.S. Topographic Map, 7.5 Minute Series, Santa Paula Quadrangle, 1951, photorevised 1967.
- Woods, Mary, C. and Seiple, W., Ray, 1995, The Northridge, California, Earthquake of 17 January 1994, C.D.M.G. Special Publication 116.

REFERENCES cont.

- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and Stokoe, K.H., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, October, 2001.
- Ziony, J.I., and others, 1985, Evaluating Earthquake Hazards in the Los Angeles Region An Earth Science Perspective, United States Geological Survey, Professional Paper 1360.

Reports

- Geolabs Westlake Village, 2005, "Due Diligence Geotechnical Investigation, 16.17 Acre Parcel, Santa Paul Memorial Hospital Property, City of Santa Paula, California, date March 21, 2005.
- Geolabs Westlake Village, 2005, "Grading Plan Review, 16.17 Acre Parcel, Ridgeview at Vista Glen, Santa Paul Memorial Hospital Property, City of Santa Paula, California, date August 10, 2005.

<u>Plans</u>

Rough Grading Plan by Development Resource Consultants, Inc., Sheets 5 through 11 of 16, dated April 10, 2006, Scale: 1"=20'.

Aerial Photographs

Agency	Date Flown	<u>Flight No</u> .	<u>Photo No.</u>
Continental	4-3-79	2-VEN-14	3,4
Continental	2-80	VEB-3	19, 20
Continental	1-8-88	VEN-4	10, 11
Inland Aerial Surveys	4-25-05	05-5939	2-1, 2-2

APPENDIX A

EXPLORATORY BORING LOGS

ALBUS-KEEFE & ASSOCIATES, INC.
EXPLORATION LOG

Project:		Proposed Residential	Development		Bo	ring N	lo.:		LEGEND		
Location:		10th Street, Santa Par	ıla		EI	evatio	1:				
J.N.:		1489.00	Client: Comstock		D۶	te:			3/1/2006		
Drill Metho	d:	(drill rig type)	Driving Weight: (ha	mmer wt. and drop)	Lo	gged l	y:		DL		
Depth (Feet)	Litho- logy		Material Description		W a t e	Sam Blows Per Foot	ples C o r	8 B U 1	Labo Moisture Content (%)	Dry Dry Density (pcf)	Other Lab Tests
		EXPLANATION Heavy solid lines se	eparate geologic units		r		e	k			
		Thin solid Lines se	nin solid Lines separate material types within geologic unit. ashed lines indicate unknown depth of material type change.								
		Dashed lines indica	te unknown depth of r	naterial type change.							
		Heavy double line in	ndicates bottom of bo	ring.							
10		Solid black rectang Split-Spoon sampler Gray shaded rectan sampler. Cross-out rectangle recovered.	 bid black rectangle in Core column represents California bit-Spoon sampler (2.5in. ID, 3in. OD). ray shaded rectangle in Core column represents SPT mpler. ross-out rectangle in Core column represents sample not covered. 				X			-	
15		Light gray Rectangl sample. Other Laboratory Te MAX = Maximum Dry SO4 = Soluble Sulfat DSR = Direct Shear, U SA = Sieve Analysis PSA = Particle Size A -200 = Percent Passi HYD = Hydrometer C CON = Consolidation	e in Bulk column repr ests: Density/Optimum Mo e Content Remolded ndisturbed (1" through #200 siev Analysis (SA with Hyd ng #200 Sieve only \Collapse	esents large bag bisture Content e) drometer)							

Project:		Proposed Residenti	al Development		Bo	oring N	lo.:		B-1		
Location:		10th Street, Santa I	Paula		El	evatio	n:		606		
J.N.:		1489.00	Client: Comstock		Da	ite:			3/2/2006		-
Drill Meth	nod:	Bucket Auger	Driving Weight: See No	otes	Lo	gged I	by:		MP		
						Sam	ples		La	poratory Tes	sts
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	C o r e	B u J k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
		TERRACE DEPOS	SITS (Qt)								
		Silty Clay with San	d (CL): Dark brown; moist;	; stiff; fine-grained							
		sand; some pinhol	e pores.								
	Qt										
							$\left \right $				
								-			
-											
— ³ —							H				
						2			16.6	110.0	MAY
			-			2			10.0	110.9	FXP
							!				SO4
							\square				DSR
											AT
							\vdash	_			
10											
<u> </u>						P/6"					
						2/6"			16.6	109.6	
						2/0		_			
		@ 12 facts Bacom	aa raaluu aabblaa ta 9 inab	aa in diamatar				ĺ			
			es rocky, cobbles to o-inch	es in diameter.			Щ				
							\vdash	_			
<u> </u>							\vdash	_			
		Silty Sand with Gra	avel and Cobbles (GM-SM):	Reddish- to							
		yellowish-brown; d	amp to moist; dense; fine- t	to coarse-grained							3.6.32
		sand; fine to coars	e gravel; trace clay; trace b	oulders to 30-							MAX
		inches in diameter.					П				
							Щ				JA
							-				
└── 20 └─└											

Project:		Proposed Residential D	evelopment		Bo	ring N	lo.:	B-1		
Location:		10th Street, Santa Paul	a		Ele	evatio	1:	606		
J.N.:		1489.00	Client: Comstock		Da	te:		3/2/2006		
Drill Meth	10d:	Bucket Auger	Driving Weight: See Note	s	Lo	gged l	oy:	MP		
						Sam	ples	La	boratory Tes	ts
Depth (Feet) 20	Litho- logy		Material Description		W a t e r	Blows Per Foot	C E o u r 1 e k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
							┝╌┼╌	-		
	Qt									
								1		
							⊢⊢	4		
		@ 23 feet: Few bould	ers to 18-inches.							
							┝┼╸	-		
25										
	TQsa	BEDROCK - Saugus <u>Clayey Siltstone:</u> Oliv to moderately hard; m sand. Contact: N75E, 24S - @ 26.5 feet: Bedding layer is truncated by te @ 30 feet: Bedding - layer; discontinuous.	Formation (TQsa) e brown to pale gray; dan oderately weathered trace contact is irregular. - N48E, 55S; 1/4-inch thic errace deposits above. N56E, 50S; 1.5-inch thick	np to moist; soft e fine-grained ck sand layer; reddish-brown		8		16.3 16.0	114.6	MAX EXP SO4 DSR AT
- 35 -		Sandy Siltstone: Pale grained sand; contact @ 35 feet: Becomes i	gray; damp; soft to mode is gradational, no distinct moderately hard; massive	erately hard; fine bedding.				-		
40		<u>Siltstone:</u> Pale gray; c indistinctly bedded to r	lamp to moist; moderately nassive; contacts are gra	/ hard; dational.				-		

r roposed Kesidential Development	Bo	oring No	o.:	B-1		
Location: 10th Street, Santa Paula	Ele	levation	:	606		
J.N.: 1489.00 Client: Comstock	Da	ate:		3/2/2006		
Drill Method: Bucket Auger Driving Weight: Se	ee Notes Lo	ogged by	y:	MP		
Depth Litho- (Feet) logy Material Description	W a t e r	Samp Blows Per Foot	C B o u r 1 e k	Lal Moisture Content (%)	Dry Density (pcf)	ts Other Lab Tests
40 TQsa Sandy Siltstone: Pale gray; damp to moi Bedding - N65E, 43S; bedding is indisting @ 44 feet: Becomes yellowish-brown. 45 @ 46 feet: 6-inch thick layer of Clayey S to pale gray; damp to moist; moderately f bedded, contact is gradational. 50 Silty Sandstone: Yellowish-brown; damp hard; fine-grained sand; contact is gradat @ 52 feet: Bedding - N65-70E, 36S; 3-in containing 1/2-inch diameter calcium carl @ 53.5 feet: Slight seepage 55 Clayey Siltstone: Clayey Siltstone: Reddish-brown and olimoist; moderately hard; contact is distinc contains rip-up clasts; upper 8 inches is r gray below. Bedding/Contact - N60E, 54S	to moist; moderately hard. to moist; moderately ional and indistinct. ch thick zone bonate nodules. ✓ //e gray; damp to t, but irregular and eddish-brown, olive	35		14.4	116.5	

Project:		Proposed Residentia	l Development	-	Bo	ring N	0.:	B-1		
Location:		10th Street, Santa Paula 1489.00 Client: Comstock			El	evation	ı:	606		
J.N.:		1489.00	Client: Comstock		D۶	ite:		3/2/2006		
Drill Metl	hod:	Bucket Auger	Driving Weight: See Notes		Lo	gged b	y:	MP		
						Samj	oles	La	boratory Tes	sts
Depth (Feet) — 60 —	Litho- logy		Material Description		W a t e r	Blows Per Foot	C I o I r e I	³ Moisture ¹ Content (%)	Dry Density (pcf)	Other Lab Tests
65		Total Depth = 60 fee Slight Seepage at 5 Moderate Caving of Casing was installe Following logging, c with cuttings. <u>Notes</u> <u>Driving Weights</u> 0-25 feet = 2,500 lb 26-45 feet = 1,500 l 46-70 feet = 750 lbs	et; downhole logged to 57 feet 3.5 feet Cobbles and Boulders from 15-25 fe d in borehole from surface to 24 feet. casing was removed and borehole bases s. bs. bs.	et						
						-				

Project:		Proposed Residential	Development		Bo	ring N	o.:	B-2		
Location:		10th Street, Santa Pau	ıla		Ele	evatior	1:	629		
J.N.:		1489.00	Client: Comstock		Da	te:		3/9/2006		
Drill Metho	od:	Bucket Auger	Driving Weight: See Notes		Lo	gged b	oy:	MP		
						Sam	ples	La	boratory Tes	ts
Depth (Feet)	_itho- logy		Material Description		W a t e r	Blows Per Foot	C B o u r 1 e k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	Qt	TERRACE DEPOSIT Silty Clay (CL): Dark fine-grained sand.	T <mark>S (Qt)</mark> grayish-brown; moist; stiff; p	orous; trace				-		
5						3		14.1	102.0	
10		@ 10 feet: Very porc	ous; slight decrease in density	ν, firm to stiff.		3		16.3	107.5	
— 15 —		@ 15 feet: Becomes diameter.	rocky, gravel and cobbles to	8-inches in						
		<u>Silty Sand with Grave</u> moist; dense; fine-gra to 10-inches in diame	el and Cobbles (SM): Medium ained sand; fine to coarse gra	n brown; vel; cobbles						

Project:		Proposed Residential	Development		Bo	ring N	0.:	B-2		
Location:		10th Street, Santa Pa	ula		El	evatio	1:	629		
J.N.:		1489.00	Client: Comstock		Da	ite:		3/9/2006		
Drill Metl	hod:	Bucket Auger	Driving Weight: See Notes		Lo	gged b	oy:	MP		
						Sam	ples	La	boratory Tes	ts
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	Qt	Gravelly Sand with (brown; moist; dense coarse gravel; few c @ 22 feet: Few bou	Cobbles and Boulders (SW): Yel ; fine- to coarse-grained sand; fir obbles and trace boulders. ders to 24 inches in diameter.	llowish- ne to						
25	TQsa	BEDROCK - Saugu <u>Clayey Siltstone:</u> Ye moderately weather roughly horizontal. @ 26.0 feet: Beddir striations pointing de carbonate mineraliz clay seam is slightly clay seam pinches o @ 28 feet: Become	as Formation (TQsa) ellowish-brown and pale gray; mo ed; trace clay; contact is irregular ng - N50E, 50S; 1/4-inch thick cla own-dip; polished and plastic; sor ation. Bedrock 1-inch above and disturbed. On northeast side of out. d moderately hard; massive.	bist; soft; · and y seam; me calcium below the borehole,						
- 30		 @ 33 feet: Fracture carbonate lined; bed @ 38 feet: Bedding cemented nodules s 	- N39W, 67N; fracture is tight; ca lrock continues massive. - N65E, 48S; Layer containing p paced 3 to 6 inches apart.	alcium ea-sized		11		14.4	119.9	

Project:	Proposed Resident	ial Development	B	oring N	ío.:	B-2		
Location:	10th Street, Santa	Paula	E	evatio	1:	629		
J.N.:	1489.00	Client: Comstock	D	ate:		3/9/2006		
Drill Method:	Bucket Auger	Driving Weight: See Notes	L	ogged b	oy:	MP		
Depth Lithe (Feet) logy		Material Description	W a t e	Sam Blows Per Foot	ples CB ou r 1	La Moisture Content (%)	boratory Tes Dry Density (pcf)	other Lab Tests
- 40 - TQs	^a <u>Sandy Siltstone:</u> contact is indistine	Yellowish-brown; moist; moderate ct.	y hard.	12	e k	14.9	119.0	
45	@ 42.5 feet: Bed coarse-grained sa borehole, continue	ding - N70E, 52S; Discontinuous f and layer; pinches out on south sid ous around 60% of borehole.	ne- to e of					
50	 @ 48 feet: Beddi coarse-grained sa 70% of borehole <u>Clayey Siltstone:</u> hard. @ 49.5 feet: Bed layers; clay layers plastic. 	ng - N62E, 64S; 4- to 6-inch thick and layer with fine gravel, continuo Yellowish-brown; moist; soft to mo ding - N68E, 48S; series of sand a s are polished; paper thin to 1/4-ind	ine- to us around oderately nd clay th thick;	16		18.8	108.4	
_ 55								

Project:		Proposed Residential D	Development	Be	oring N	lo.:	B-2		
Location:		10th Street, Santa Paul	a	EI	evatio	ı:	629		
J.N.:		1489.00	Client: Comstock	Da	ate:		3/9/2006		
Drill Metl	hod:	Bucket Auger	Driving Weight: See Notes	Lo	ogged b	y:	MP		
			· · · · · · · · · · · · · · · · · · ·		Sam	ples	La	boratory Tes	sts
Depth (Feet)	Litho- logy		Material Description	W a t e r	Blows Per Foot	CE ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
		Total Depth = 58 feet; No Groundwater Moderate Caving of C Casing was installed in Following logging, cas with cuttings. <u>Notes</u> <u>Driving Weights</u> 0-25 feet = 2,500 lbs. 26-45 feet = 1,500 lbs. 46-70 feet = 750 lbs.	downhole logged to 52 feet obbles and Boulders from 16-23 feet n borehole from 4 to 20 feet. ing was removed and borehole backfilled						

Project:		Proposed Residential I	Development		Bo	ring N	l o.:		B-3		
Location:		10th Street, Santa Paul	a		Ele	evation	1:		691		
J.N.:		1489.00	Client: Comstock		Da	te:			3/10/2006		
Drill Meth	nod:	Bucket Auger	Driving Weight: See Notes		Lo	gged l	y:		MP		
Depth (Feet)	Litho- logy		Material Description		W a t e r	Sam Blows Per Foot	ple C o r	s B u 1 k	Lab Moisture Content (%)	Oratory Test Dry Density (pcf)	s Other Lab Tests
	Qaf	ARTIFICIAL FILL (Qa Silty Clay to Clayey S moist; soft.	ıf) ilt (CL-ML): Dark grayish-brow	/n; very							
5	Qt	TERRACE DEPOSIT Clayey Silt with Sand soft; fine-grained sand	<u>S (Qt)</u> (<u>ML):</u> Dark grayish-brown; ve d; few fine to coarse gravel.	ry moist;							
10		 @ 10 feet: Few coars diameter. @ 12 feet: Becomes 	se gravel and small cobbles to reddish-brown; very moist; sol	6 inches in t.							
- 15 -		@ 15 feet: Increase i	n cobbles.								

Project:		Proposed Residential I	Development		Bo	ring N	0.:		B-3		
Location:		10th Street, Santa Pau	la		El	evatior	:		691		
J.N.:		1489.00	Client: Comstock		Da	te:			3/10/2006		
Drill Metho	od:	Bucket Auger	Driving Weight: See Notes		Lo	gged b	y:		МР		
						Sam	ples	;	Lab	oratory Test	s
Depth (Feet) — 20 —	Litho- logy		Material Description		w a t e r	Blows Per Foot	C o r e	B u 1 k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	Qt	@ 21 feet: Becomes	moist to very moist; stiff.								
- 25 -		 @ 24 feet: Becomes carbonate stringers; r terrace deposits. @ 26.5 feet: 2- to 4-i 	Olive brown; moist; some calc oughly horizontal erosional cor nch thick Silty Sand with Grave	um itact within I layer.					-		
	ΓQsa	BEDROCK - Saugus Clayey Siltstone: Oliv weathered; some cal Contact - N10W, 27E @ 29 feet: Fracture	Formation (TQsa) ve brown; moist; soft; moderate cium carbonate mineralization. · N56W, 80N; fracture is tight.	ŀlγ							
		Sandy Siltstone: Oliv moderately hard; fine Bedding - N75E, 42S @ 32.5 feet: Fracture calcium carbonate lin @ 33.5 feet: Bedding	ve gray to yellowish-brown; moi -grained sand; thinly bedded to e - N18W, 63N; fracture is tight ed. g/Lamination - N66E, 45S	st; soft to laminated. and							

Project:		Proposed Residential	Development		Bo	ring N	0.:		B-3		
Location:		10th Street, Santa Pau	la		Ele	evation	ı:		691		
J.N.:		1489.00	Client: Comstock		Da	te:			3/10/2006		
Drill Meth	10d:	Bucket Auger	Driving Weight: See No	tes	Lo	gged b	y:		MP		
Depth (Feet)	Litho- logy		Material Description		W a t e r	Samp Blows Per Foot	C O r e	s B u 1 k	Lab Moisture Content (%)	oratory Test Dry Density (pcf)	s Other Lab Tests
45		Total Depth = 40 feet No Groundwater Following logging, bo <u>Notes</u> <u>Driving Weights</u> 0-25 feet = 2,500 lbs. 26-45 feet = 1,500 lbs. 46-70 feet = 750 lbs.	; downhole logged to 37 f rehole was backfilled with 5.	feet n cuttings.							

Project:		Proposed Residential D	evelopment		Bo	ring N	0.:	HS-1		
Location:		10th Street, Santa Paul	a		Ele	evatior	1:	598		
J.N.:		1489.00	Client: Comstock		Da	te:		3/1/2006		
Drill Meth	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 3	0" Autoham.	Lo	gged b	oy:	DL		
						Sam	ples	La	poratory Tes	ts I
Depth (Feet)	Litho- logy		Material Description		w a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
5	Qt	TERRACE DEPOSITS Silty Clay with Sand (C foot, damp below; stiff pores; trace sandstone @ 5 feet: Becomes ve	5 (Qt) <u>CL):</u> Dark grayish-brown; we some fine-grained sand, so a fragments.	t in upper me pinhole		25		14.1	107.3	EXP SO4 AT
		@ 7 feet: Becomes da	ark brown, pinhole porosity c	ontinues.		30	-	16.3	110.6	CON
10		@ 10 feet: Becomes s	stiff, pinhole porosity continu	es.		22		17.1	108.4	CON
		@ 15 feet: Becomes	very stiff, pinhole porosity co	ntinues.		28		18.4	106.7	CON

Project:		Proposed Residential D	evelopment		Bo	ring N	lo.:	HS-1		
Location:		10th Street, Santa Paula	1		El	evatio	n:	598		
J.N.:		1489.00	Client: Comstock		Da	te:		3/1/2006		
Drill Meth	10d:	8" Hollow Stem Auger	Driving Weight: 140 lbs	@ 30" Autoham.	Lo	gged l	oy:	DL		
						Sam	ples	La	boratory Tes	ts
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
20		Sandy Silt (ML): Medi some pinhole porosity;	um brown; moist; stiff; fir trace clay.	ne-graind sand;		25		18.1	101.8	CON
	Qt									
- 25 -		Sandy Silt with Clay (N	<u>//L):</u> Dark grayish-brown	; moist; stiff; fine-		22		19.2	106.8	
- 30		Sand (SP): Yellowish- grained sand; rock frag	brown; very moist; very gment in tip.	dense; fine-		10/6" 50/5"		15.2	111.6	
		@ 31.5 feet: Becomes	s cobbley					_		
								-		
25								-		
						50/5'				
	TQsa	PEDDOCK Sources	Formation (TOca)			50/61	,	27	136.0	
· · · · ·		Sandstone: Yellowish grained sand; slightly v	-brown; damp; moderate weathered; moderately c	ly hard; fine- emented.		50/0		5.1	150.0	
40		Total Depth = 37.5 fee Perched Groundwater	t at 27 feet							

Project:		Proposed Residential D	evelopment		Bo	ring N	0.:	HS-2		
Location:		10th Street, Santa Paula	1		Ele	evation	:	610		
J.N.:		1489.00	Client: Comstock		Da	te:		3/1/2006		
Drill Meth	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30	" Autoham.	Lo	gged b	y:	DL		
						Sam	ples	Lat	poratory Tes	ts
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	ç	TERRACE DEPOSITS Clayey Silt to Silty Clar very stiff; trace pinhole	<u>(Qt)</u> <u>y (ML-CL):</u> Dark grayish-brov pores; trace sandstone fragr	vn; moist; nents.		21		16.9	111.9	
5	Qt					28		17.7	109.8	CON
10		<u>Sandy Silt with Clay to</u> brown; moist; stiff; fine	Clayey Silt with Sand (ML): -grained sand; trace pinhole	Medium pores.		22		18.0	105.3	CON
15		@ 15 feet: Becomes v pinhole pores.	very stiff, some darker mottlei	ng, trace		41		18.9	108.7	
		· · · · · · · · · · · · · · · · · · ·								

Project:		Proposed Residential D	evelopment		Bo	ring N	0.:	HS-2		
Location:		10th Street, Santa Paula	1		El	evatior	1:	610		
J.N.:		1489.00	Client: Comstock	······································	Da	te:		3/1/2006		
Drill Meth	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs	@ 30" Autoham.	Lo	gged b	oy:	DL		
						Sam	ples	La	boratory Tes	ts
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
		@ 20 feet: Becomes s mineralization; trace p	tiff; some calcium carbo nhole pores.	onate		22		19.9	106.3	CON
	Qt						-			
								-		
25		<u>Sandy Silt with Clay (N</u> stiff; no visible pores.	<u>/IL):</u> Medium brown; ve	ry moist to wet;		20		20.7	104.3	CON
		<u>Sandy Clay (CL):</u> Yell grained sand.	owish-brown; very mois	it; stiff; fine-				-		
- 30		<u>Clayey Sand (SC):</u> Ye grained sand.	llowish-brown; very mo	ist; dense; fine-		10/6" 50/5"		9.4	123.3	
		<u>Silty Sand (SM):</u> Redo fine-grained sand; son @ 32.0 feet: Become	dish-brown; moist; dens ne small cobbles. s cobbley	e to very dense;				-		
_ 35 _		Total Depth = 34.0 fee Perched Groundwater	t (Refusal) at 28 feet							
40										

Project:		Proposed Residential D	evelopment		Bo	ring N	0.:	HS-3		
Location:		10th Street, Santa Paula	1		Ele	evatior	ı:	614		
J.N.:		1489.00	Client: Comstock		Da	te:		3/1/2006		
Drill Metho	d:	8" Hollow Stem Auger	Driving Weight: 140 lbs @	30" Autoham.	Lo	gged b	oy:	DL		
						Sam	ples	Lat	poratory Tes	ts
Depth L (Feet)	itho- logy		Material Description		w a t e r	Blows Per Foot	CB ou rl ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
0 5 10 15	Qt	TERRACE DEPOSITS Sandy Silt (ML): Dark sand; trace pinhole po	(Qt) brown; moist; very stiff; fin res.	e-grained	r	332628		15.8	113.7 105.5 108.5	EXP SO4 AT
20										

Project:		Proposed Residential D	evelopment	B	orinş	; N	0.:	HS-3		
Location:		10th Street, Santa Paula	a	E	levat	ior	n:	614		
J.N.:		1489.00	Client: Comstock	D	ate:			3/1/2006		
Drill Metho	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoham	. L	ogge	d b	y:	DL		
					S	am	ples	La	boratory Tes	sts
Depth (Feet)	Litho- logy		Material Description	a t r	Blo Pe Fo	ws r ot	C E o u r 1 e k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	Qt	Sandy Silt to Silty San with orange iron oxide graind sand; trace pinf @ 22.0 feet: Becomes	<u>d (ML-SM):</u> Yellowish-brown mottled staining; moist; stiff/medium dense; fine nole porosity. s cobbley	9-	2.			21.7	102.7	
<u> </u>	TQsa	BEDROCK - Saugus <u>Silty Sand (SM)</u> Yellor fine-grained sand; high charcoal/carbon fragm rock in sampler tip at 2	Formation (TQsa) wish-brown; moist; very dense to hard; nly weathered; trace pinhole pores; som ents; trace calcium carbonate stringers; 25 feet.	e	24/ 50/ 6	'6" '5" 4		16.3	112.2	DS
_ 30		<u>Sandy Siltstone:</u> Gray staining; moderately h slightly weathered; sor Total Depth = 31.5 fee No Groundwater	vish-brown with reddish-brown iron oxide ard; parts along bedding planes (+/- 45 [°] me calcium carbonate stringers.	e);	8	4		17.5	111.7	DS

Project:		Proposed Residential D	evelopment		Bo	ring N	o.:	HS-4		
Location:		10th Street, Santa Paul	a		Ele	evatior	ı:	604		
J.N.:		1489.00	Client: Comstock		Da	te:		3/2/2006		
Drill Meth	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Auto	oham.	Lo	gged b	y:	DL		
						Sam	ples	La	poratory Tes	ts
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
0		TERRACE DEPOSITS	<u>S (Qt)</u>							
		Sandy Silt with Clay (<u>ML):</u> Brown to grayish-brown; moist	t; stiff				-		
	•	becoming very stiff wit	th depth; fine-grained sand; some p	inhole						
	Qt	pores; trace fine grave	91.							
							└──	-		
	-									
5										
						28		15.3	114.0	CON
							\square	1		
							\vdash	-		
							Π			
10		@ 10 fact: No change						-		
			5.			37		17.5	107.8	
								-		
					_					
							┝-┼-	4		
_ 15 _		City Cond (CM): Mod	ium brown: von, moist: modium dor	200.						
		fine-grained sand: trac	ce pinhole porosity.	150,		28		18.0	108.0	CON
								-		
							H	1		
					1	ľ		4		
							$\left \right $	-		
L 20 _	L	La norma n				<u></u>	4			

Project:		Proposed Residential D	evelopment		Bo	ring N	o.:	HS-4		
Location:		10th Street, Santa Paula	l		El	evatior	1:	604		
J.N.:		1489.00	Client: Comstock		Da	te:		3/2/2006		
Drill Metho	d:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30	" Autoham.	Lo	gged b	y:	DL		
						Sam	ples	La	boratory Tes	ts
Depth L (Feet) ¹	itho- logy		Material Description		W a t e r	Blows Per Foot	CB ou rl ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	Qt	Sandy Silt with Clay to brown; moist to very m sand; slight increase ir stringers, some small r	Silty Sand with Clay (ML-SM oist; stiff/medium dense; fine ppinhole porositytrace calciu root decay.	<u>1):</u> Medium -graind m carbonate		25		18.6	105.6	CON
		<u>Clayey Silt (ML):</u> Yello stiff; trace fine-grained @ 28 feet: Becomes o	owish-brown; moist to very m sand. cobbley	oist; very	∑_	39		19.8	107.6	
- 30 - T	ſQsa	BEDROCK - Saugus Sandy Siltstone: Gray moderately hard; fine-g weathered; appears th	Formation (TQsa) and yellowish-brown; damp grained sand; moderately to inly bedded.	soft to highly		51		16.8	111.4	
- 35 -		@ 35 feet: Becomes r Total Depth = 36.0 fee Perched Groundwater	moderately hard; decrease in t at 28 feet	weathering.		27/6' 50/5'		13.7	118.9	DS
40										

Project:		Proposed Residential D	evelopment	J	Bo	ring N	0.:		HS-5		
Location:		10th Street, Santa Paula	a	1	Ele	vatior	1:		602		
J.N.:		1489.00	Client: Comstock	1	Da	te:		3/	/2/2006		
Drill Metho	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoha	m. I	Ĺo	gged b	y:		DL		
						Sam	ples		Lab	oratory Tes	ts
Depth L (Feet)	_itho- logy		Material Description		W a t e r	Blows Per Foot	C I o r e I	B N U Co I k	Moisture ontent (%)	Dry Density (pcf)	Other Lab Tests
	Qt	TERRACE DEPOSITS Clayey Silt with Sand (porosity; trace fine-gra	<u>S (Qt)</u> <u>ML):</u> Dark brown; moist; stiff; some ined sand and cobbles.		ŗ	23			14.7	107.9	
		Sandy Silt (ML): Red sand; trace porosity;sc mineralization. @ 15 feet: No change	dish-brown; moist; very stiff; fine-grain ome clay, some calcium carbonate	ed		36 31			15.8	111.7	CON
								-			

Project:		Proposed Residential D	evelopment	····	Bo	ring N	lo.:	HS-5		
Location:		10th Street, Santa Paula	1		Ele	evatior	1:	602	· · · · · · · · · · · · · · · · · · ·	
J.N.:		1489.00	Client: Comstock		Da	te:		3/2/2006		
Drill Meth	nod:	8" Hollow Stem Auger	Driving Weight: 140 lbs @	30" Autoham.	Lo	gged b	у: 	DL		
						Sam	ples	Lal	poratory Tes	s
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou rl ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
_ 20		@ 20 feet: No change				32		19.8	107.3	
	Qt									
	-						\vdash	-		
								-		
							\vdash	-		
25 -		Silty Sand (SM): Light	brown; moist; dense; trac	e calcium						
25		carbonate mineralizati	on; no visible pores.			36		18.5	109.5	
			-					· ·		
								4		
20										
$F^{30} -$		Sandy Silt with Clay (N	<u>/IL):</u> Dark brown; moist to	very moist;		30		19.9	107.1	
·								1		
								-		
F ³⁵ −		Clayey Silt (ML): Yello	owish-brown; moist; very s	stiff; trace fine-		33		179	109.9	
		graineu sariu.						-		
		@ 07.0 facts Deserve	aabblou							
	1	W 31.0 TEET: Become								
		Total Depth = 39 feet (No Groundwater	Refusal)							
40										

Project:		Proposed Residential D	evelopment		Bo	ring N	0.:	HS-6		
Location:		10th Street, Santa Paul	a		Ele	evation	ı:	636		
J.N.:		1489.00	Client: Comstock		Da	te:		3/2/2006		
Drill Meth	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" A	utoham.	Lo	gged b	y:	DL		
						Sam	ples	La	boratory Tes	ts
Depth (Feet)	Litho- logy		Material Description		w a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	Qt	TERRACE DEPOSITS Clayey Silt with Sand grained sand; some pi	<u>5 (Qt)</u> (<u>ML):</u> Dark brown; moist; stiff; fir nhole pores.	ie-						
						62		12.0	113.7	
	-					21		12.9	100.9	
10		@ 10 feet: Becomes	very stiff.			27		18.6	108.6	
15					-			-		
		W 15 TEET: No change	3.			34		18.1	111.5	
20					-					

Project:		Proposed Residential D	evelopment	B	oring N	lo.:	HS-6		
Location:		10th Street, Santa Paula	a	E	evatio	n:	636		
J.N.:		1489.00	Client: Comstock	D	ate:		3/2/2006		
Drill Metl	nod:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoham	. Le	ogged l	by:	DL		
					Sam	ples	La	boratory Tes	ts
Depth (Feet)	Litho- logy		Material Description	W a t e r	Blows Per Foot	CB ou rl ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	0.4	Clayey to Sandy Silt (N stiff; fine-graind sand;	<u>ML):</u> Yellowish-brown; very moist; very trace porosity.	-	28		19.6	108.6	
	Qt								
		@ 23 feet: Becomes o	cobbley						
25		BEDROCK - Saugus	Formation (TQsa)						
	TQsa	<u>Sandy Siltstone:</u> Gray moderately hard; fine-g	and light brown; damp; soft to grained sand; moderately weathered.		80		13.4	119.1	DS
30		Total Depth = 28.5 fee Perched Groundwater	t at 20 feet				-		
							-		
- 35 -							-		

	Proposed Residential Development Boring No.: HS-7						
Location: 10th Street, Santa Paula Elevation: 622							
J.N.: 1489.00 Client: Comstock Date: 3/2/2006							
Drill Method: 8" Hollow Stem Auger Driving Weight: 140 lbs @ 30" Autoham. Logged by: DL							
Samples Labo	aboratory Tests						
Depth (Feet) logy Material Description $\begin{pmatrix} W \\ a \\ b \\ c \\ e \\ Foot \\ r \\ e \\ k \end{pmatrix}$ Moisture I content (%) I	Dry Density (pcf)	Other Lab Tests					
ARTIFICIAL FILL (Qaf)							
Road fill.							
Clavov Silt (ML): Dark brown: moist: stiff: trace fine grained							
sand							
36 12.7	122.5	CON					
Candy Silt to Silty Sand (ML SM), Dark brown, mainty your							
Qt Sandy Sill to Silly Sand (ML-Sill). Dark brown, moist, very							
10 0 10 feet: Becomes porous to very porous: decrease in sand							
content, Sandy Silt (ML); stiff.	07.5	CON					
	97.5	CON					
- 15 - @ 15 feet: Becomes very stiff.							
20							

Project:	Proposed Residential D	evelopment	Boring No.: HS-7					
Location:	10th Street, Santa Paula	a	E	evatio	1:	622		
J.N.:	1489.00	Client: Comstock	D	ate:		3/2/2006		
Drill Method:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autohan	1. L	ogged b	oy:	DL		
•				Sam	ples	La	boratory Tes	ts
Depth Lith (Feet) log	0- y	Material Description	W a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
Q	Clayey Silt with Sand (moist; very stiff; fine-gr	(<u>ML):</u> Medium brown; moist to very rained sand; trace porosity.		33		18.5	109.7	DS
- 25 - - 30 - - 35 -	Silty Sand to Sand (SM fine-grained sand. @ 30 feet: No Change @ 32.0 feet: Becomes Total Depth = 34.0 feet No Groundwater	<u>И-SP):</u> Yellowish-brown; moist; dense; s. s cobbley		26		19.4	104.5	DS
40								

Project:	Proposed Residential D	al Development Boring No.: HS-8						
Location:	10th Street, Santa Paul	a	E	evatio	1:	643		
J.N.:	1489.00	Client: Comstock	D	ate:		3/2/2006		
Drill Method:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoham	. L	ogged l	oy:	DL		
				Sam	ples	La	boratory Tes	ts
Depth Litho- (Feet) logy		Material Description	W a t e r	Blows Per Foot	C o r e	B u Content (%) k	Dry Density (pcf)	Other Lab Tests
QtQt	TERRACE DEPOSITS Clayey Silt with Sand (grained sand; some po	<u>S (Qt)</u> <u>ML):</u> Dark brown; moist; stiff; fine- brosity.						

Project:		Proposed Residential D	evelopment	· · · · · · · · · · · · · · · · · · ·	Bo	ring N	lo.:		HS-8		
Location:		10th Street, Santa Paul	a		Ele	evatioi	1:		643		
J.N.:		1489.00	Client: Comstock		Da	te:			3/2/2006		
Drill Meth	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 3	0" Autoham.	Lo	gged b	oy:		DL		
						Sam	ples	;	Lal	poratory Tes	ts
Depth (Feet) — 20 —	Litho- logy		Material Description		W a t e r	Blows Per Foot	C o r e	B u 1 k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	Qt										
25											
_ 30											
- 35 -											
		@ 37.0 feet: Thin grav	vel layer.								

Project: Proposed Residential Development Boring No.: HS-8								
Location:	10th Street, Santa Paula	a	El	evatior	1:	643		
J.N.:	1489.00	Client: Comstock	D۶	nte:		3/2/2006		
Drill Method:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoham.	Lo	gged b	y:	DL		
Depth Litho- (Feet) ^{logy}		Material Description	W a t e r	Sam Blows Per Foot	CB ou r1 ek	La Moisture Content (%)	Dry Density (pcf)	ts Other Lab Tests
45	<u>Sand (SP):</u> Yellowish-	brown; moist; dense; fine-grained sand.		38		8.9	104.1	
50	@ 50 feet: Becomes r @ 53 feet: Becomes c	nedium dense. cobbley.		29				
	Total Depth = 56.5 fee No Groundwater	t (Refusal)						

Project:		Proposed Residential Development				Boring No.: HS-9					
Location:		10th Street, Santa Paula	1		Ele	evatior	1:	622			
J.N.:		1489.00	Client: Comstock		Da	te:		3/9/2006			
Drill Metl	nod:	8" Hollow Stem Auger	Driving Weight: 140 lbs	@ 30" Autoham.	Lo	gged b	y:	СМ			
						Sam	ples	La	poratory Tes	ts	
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests	
		TERRACE DEPOSITS	<u>; (Qt)</u>								
	Qt	<u>Silt (ML):</u> Dark brown; fragments in sampler.	damp; hard; slightly po	rous; roots; rock							
						50/5"		11.6	109.1		
5		<u>Sandy Silt (ML):</u> Redd rock fragments.	lish-brown; dry to damp	; very stiff; some		49		10.6	118.4		
10											
		<u>Silt (ML):</u> Reddish-bro	wn; moist; hard; minor ;	pinhole pores.		60		17.3	111.3		
<u> </u>		<u>Clayey Silt (ML):</u> Redo grained sand.	dish-brown; moist; very	stiff; trace fine-		48		19.8	106.7		
										:	
L 20 _											

Location: 10th S J.N.: 1489.0 Drill Method: 8'' Hol Depth (Feet) logy 20 Qt Qt	Street, Santa Paul 00 ollow Stem Auger	a Client: Comstock Driving Weight: 140 lbs @ 30" Autoham. Material Description e	El Da Lo W a t e r	evation ate: ogged I Sam Blows Per Foot	n: ples C B o u r 1	622 3/9/2006 CM Lai Moisture Content (%)	boratory Tes Dry Density (pcf)	ts Other Lab
J.N.: 1489.0 Drill Method: 8'' Ho Depth (Feet) Litho- logy 20 @ 20 Qt	00 ollow Stem Auger	Client: Comstock Driving Weight: 140 lbs @ 30" Autoham. Material Description	Da La W a t e r	ate: pgged I Sam Blows Per Foot	ples C B o u r 1	3/9/2006 CM La Moisture Content (%)	boratory Tes Dry Density (pcf)	ts Other Lab
Drill Method: 8" Ho Depth (Feet) logy 20 Qt Qt	ollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoham. Material Description	W a t e r	Blows Per Foot	ples C B o u r l	CM La Moisture Content (%)	boratory Tes Dry Density (pcf)	ts Other Lab
Depth (Feet) Litho- logy 20 20 Qt) feet: No Chang	Material Description	W a t e r	Sam Blows Per Foot	ples CB ou r 1	La Moisture Content (%)	boratory Tes Dry Density (pcf)	ts Other Lab
Depth (Feet) Litho- logy @ 20 @ 20) feet: No Chang	Material Description	W a t e r	Blows Per Foot	CB ou r1	Moisture Content (%)	Dry Density (pcf)	Other Lab
Qt @ 20) feet: No Chang	e			e k			Tests
				29				
25@ 25	i feet: Trace pinh	ole pores.		40		20.6	106.5	
- 30 - <u>Sandy</u> sand. - 35 - @ 35 (SM-N	<u>y Silt (ML):</u> Yello feet: Increase ir ML); very dense. .5 feet: Becomes	wish-brown; moist; very stiff; fine-grained	-	21 34/6" 50/4"		19.4	107.1	

Project:	Proposed Residential D	evelopment	Bo	oring N	lo.:	HS-9		
Location:	10th Street, Santa Paul	a	El	evatio	1:	622		
J.N.:	1489.00	Client: Comstock	D۵	ate:		3/9/2006		
Drill Method:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoham.	Lo	ogged l	y:	СМ		
Depth Litho- (Feet) logy		Material Description	W a t e	Sam Blows Per Foot	ples C E o u r l	La Moisture Content (%)	Dry Density (pcf)	ts Other Lab Tests
_ 40	<u>Silty Sand to Sandy Si</u> moist; very dense/hard sampler tip.	It (SM-ML): Yellowish-brown; damp to l; fine-grained sand; rock fragments in	F	45/6" 50/4"				
50	Total Depth = 47.0 fee No Groundwater	t (Refusal)						

Project:	Proposed Residential Development Boring No.: HS-10									
Location:		10th Street, Santa Paula	1		Ele	evatio	1:	686		
J.N.:		1489.00	Client: Comstock		Da	te:		3/9/2006		
Drill Metho	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 3	0" Autoham.	Lo	gged b	y:	СМ		
						Sam	ples	La	boratory Tes	ts
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	C o r e	B u Content (%)	Dry Density (pcf)	Other Lab Tests
	Qt	TERRACE DEPOSITS Sandy Clay (CL): Dark grained sand; no visible	(Qt) brown; damp to moist; ver e pores.	y stiff; fine-				_		
5						42		17.9	108.4	
		<u>Silty Clay (CL):</u> Dark b sandstone rock fragme	rown; moist; very stiff; no v nts.	sible pores;		29		12.6	114.4	
10		<u>Silty Clay to Clayey Silt</u> very stiff; trace fine-gra	t <u>(CL-ML):</u> Mottled red and ined sand.	brown; moist;		37		12.1	115.3	
15		@ 15 feet: No change.				22				

Project:	Proposed Residential Development Boring No.: HS-10							
Location:	10th Street, Santa Paul	a	EI	evatio	1:	686		
J.N.:	1489.00	Client: Comstock	Da	nte:		3/9/2006		
Drill Method:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoham.	Lo	gged b	y:	СМ		
				Sam	ples	La	poratory Tes	ts
Depth Lith (Feet) log)-	Material Description	W a t e r	Blows Per Foot	CB ou rl ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
	Silty Sand to Sandy Si dense/hard; fine-grain	<u>lt (SM-ML):</u> Yellowish-brown; moist; very d sand; some coarse gravel.		55		5.8	disturbed	
Q(@ 22 feet: Becomes o	cobbley	-					
25 -		-		50/3"	X			
- 30 - TQ	a <u>Siltstone:</u> Light brown calcium carbonate stri	Formation (TQsa) ; dry to damp; moderately hard; some ngers.		35/6" 50/4"		11.1	110.0	
- 35 -	Total Depth = 31.5 fee No Groundwater	t						

Project:	Proposed Residential Development Boring No.: HS-11											
Location:		10th Street, Santa Paula	1		Ele	evatior	1:	691		_		
J.N.:		1489.00	Client: Comstock		Da	te:		3/9/2006				
Drill Meth	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs	@ 30" Autoham.	Lo	gged b	oy:	СМ				
						Sam	ples	La	boratory Tes	Tests		
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests		
		TERRACE DEPOSITS	(Qt)									
	Qt	<u>Clayey Silt (ML):</u> Dark pinhole pores.	brown; dry to damp; ve	ery stiff; some								
						43		7.1	116.6			
										. I		
5		<u>Sandy Silt (ML):</u> Redd sand; pinhole pores.	ish-brown; damp; hard;	fine-grained		61		9.0	125.7			
		@ 8 feet: No Recover	/, sandstone rock fragm	nent in tip.		50	X					
10		<u>Silty Clay (CL):</u> Yellow <u>Sandy Silt (ML):</u> Yellow	ish-brown; damp; very vish-brown; damp; haro coarse gravel.	stiff; fine gravel. I; fine-grained		25 64		10.0	125.6			
			_									

Project:		Proposed Residential D	evelopment		Boring No.: HS-11								
Location:		10th Street, Santa Paula	1		El	evatio	1:	691					
J.N.:		1489.00	Client: Comstock		D۶	te:		3/9/2006					
Drill Meth	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30"	Autoham.	Lo	gged l	y:	СМ					
						Sam	ples	La	aboratory Tests				
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou rl ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests			
20		@ 20 feet: Becomes I	ight brown; very stiff.			28							
	Qt												
	-												
	TQsa												
<u> </u>		BEDROCK - Saugus	Formation (TQsa)			73		17.8	112.7				
		<u>Clayey Siltstone:</u> Olive some calcium carbona	e brown; damp; soft to modera te stringers.	tely hard;									
— 30 —		Sandy Siltstone: Olive	brown; damp; moderately har	d; fine-		30/6"							
		grained sand; trace cla	ıy.			50/5"							
									-				
- 35 -		Siltstone: Yellowish-b	rown; damp; moderately hard.			33/6"							
						50/2"		17.0	108.9				
							$\left \right $						
							+						
40													
Location:10th Street, Santa PaulaElevation:691J.N.:1489.00Client: ComstockDate:3/9/2006													
--	----------------------	--------------------											
J.N.: 1489.00 Client: Comstock Date: 3/9/2006													
Drill Method: 8" Hollow Stem Auger Driving Weight: 140 lbs @ 30" Autoham. Logged by: CM													
Depth (Feet)Litho- logyMaterial DescriptionSamplesLabW aBlows Per cB u tMoisture Content (%)	Dry Density (pcf)	Other Lab Tests											
- 40 - @ 40 feet: No Change.													
Total Depth = 41.5 feet No Groundwater													
55													

Project:		Proposed Residential D	evelopment		Bo	ring N	0.:	HS-12		
Location:		10th Street, Santa Paul	a		Ele	evatior	1:	653		
J.N.:		1489.00	Client: Comstock		Da	te:		3/9/2006		
Drill Meth	nod:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Auto	oham.	Lo	gged b	y:	СМ		
						Sam	ples	La	boratory Tes	ts
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	C E o u r l e k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
		TERRACE DEPOSITS Clayey Silt (ML): Dark	5 (Qt) t brown; moist; very stiff; porous.					_		
	Of									
	ω,							-		
								- ·		
5						39		16.0	114.2	
			. .							
10							:	-		
		@ 10 feet: Pinhole po	res.			36		18.3	109.1	
_ 15 _		@ 15 feet: No visible	pores.							
						21		-		

Project:	Proposed Residential D	evelopment	B	oring l	No.:	HS-12		
Location:	10th Street, Santa Paul	a	E	levatio	n:	653		
J.N.:	1489.00	Client: Comstock	D	ate:		3/9/2006		
Drill Method:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoha	ım. L	ogged	by:	СМ		
				San	nples	La	boratory Tes	sts
Depth Litho- (Feet) logy		Material Description		Blows Per Foot	5 C B 0 u 1 1 e k	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
Qt	Clayey Silt (ML): Yello pinhole porosity; trace	owish-brown; moist; very stiff; trace fine gravel.		34		19.5	107.3	
						-		
25	<u>Sandy Silt to Silty San</u> stiff/medium dense; fin -	<u>d (ML-SM):</u> Yellowish-brown; moist; v ie-grained sand.	very	21				
- 30	<u>Clayey Silt (ML):</u> Yello gravel in tip.	owish-brown; moist; very stiff; coarse		38		19.6	99.0	
- 35 -	@ 35 feet: Decrease i	n clay content; some gravel.		32				
		<u></u>						

Project:		Proposed Residential D	evelopment	Bo	oring N	0.:	HS-12		
Location:		10th Street, Santa Paula	1	EI	evatio	1:	653		
J.N.:		1489.00	Client: Comstock	D٤	nte:		3/9/2006		
Drill Metl	10d:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoham.	Lo	ogged b	y:	CM		
Depth	Litho-		Material Description	W a	Sam Blows Per	ples C B	La Moisture	boratory Tes Dry Density	ts Other Lab
(Feet)	logy			e r	Foot	ou rl ek	Content (%)	(pcf)	Tests
— 40 —		<u>Silt (ML):</u> Yellowish-br sampler tip.	own; moist; very dstiff; coarse gravel in		29				
		Total Depth = 41.5 feet No Groundwater							
45									
50								- - - -	
55									

.

Project:		Proposed Residential D	evelopment	Bo	oring N	0.:	HS-13		
Location:		10th Street, Santa Paula	1	El	evatior	1:	647		
J.N.:		1489.00	Client: Comstock	D	ate:		3/9/2006		
Drill Meth	od:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30" Autoham	. Lo	ogged b	y:	СМ		
					Sam	ples	La	boratory Tes	ts
Depth (Feet)	Litho- logy		Material Description	W a t e r	Blows Per Foot	CB ou r1 ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
- 0		TERRACE DEPOSITS	6 (Qt)						
		Clayey Silt with Sand (ML): Dark brown; moist; very stiff; fine-						
	•	grained sand; pinhole	pores.						
	Qt						-		
						<u> -</u>			
						Π			
5									:
					43		14.9	114.5	
	:								
i i									
						Π			
						\square			
<u> </u>		@ 10 feet: No visible	oores.				•		
					20				
						┝─┟─			
						┝┼╼	1		
1.5									
- 15 -		Silty Sand to Sandy Si	<u>It (SM-ML):</u> Yellowish-brown; moist; vei	ГУ I	12		177	1110	
		stim/dense; fine-graine	a sana; porous.		43		1/./	111.0	
						\square			
						\vdash			
							1		

Project:		Proposed Residential D	evelopment		Bo	ring N	lo.:	HS-13		
Location:		10th Street, Santa Paul	a		Ele	evatio	1:	647		
J.N.:		1489.00	Client: Comstock		Da	te:		3/9/2006		
Drill Meth	nod:	8" Hollow Stem Auger	Driving Weight: 140 lbs @ 30	" Autoham.	Lo	gged b	y:	СМ		
						Sam	ples	Lal	poratory Tes	ts
Depth (Feet)	Litho- logy		Material Description		W a t e r	Blows Per Foot	CB ou rl ek	Moisture Content (%)	Dry Density (pcf)	Other Lab Tests
		@ 20 feet: Becomes v	/ery stiff/medium dense			25		-		
	Qt									
25		@ 25 feet: Trace fine	gravel.			44		17.4	110.1	
		@ 30 feet: Refusal on	Cobbles.			20/1"		-		
		Total Depth = 30.0 fee No Groundwater	t (Refusal)							
_ 35 _										
40										

APPENDIX B

LABORATORY TEST PROGRAM

ALBUS-KEEFE & ASSOCIATES, INC.

LABORATORY TESTING PROGRAM

Soil Classification

Soils encountered within the exploratory borings and trenches were initially classified in the field in general accordance with the visual-manual procedures of the Unified Soil Classification System (ASTM D2488-93). The samples were re-examined in the laboratory and classifications reviewed and then revised where appropriate. The assigned group symbols are presented in the Boring and Trench Logs provided in Appendix A.

In Situ Moisture and Density

Moisture content and dry density of in-place soil materials were determined in representative strata. Test data are summarized in the Boring Logs provided in Appendix A.

Laboratory Maximum Dry Density

Maximum dry density and optimum moisture content of onsite soils were determined for a selected sample in general accordance with Method A of ASTM D1557-91. Pertinent test values are given on Table B-1.

Direct Shear

Direct shear tests were performed for undisturbed soil samples and a sample remolded to 90 percent of the maximum dry density. AMEC Earth and Environmental performed this test in general accordance with ASTM D3080-98. Three specimens were prepared for each test. The test specimens were artificially saturated, and then sheared under varied normal loads at a maximum constant rate of 0.0083 inches per minute. Results are graphically presented on Plates B-1 through B-9.

Consolidation

Consolidation tests were performed in general accordance with ASTM D 2435-96. Axial loads were applied in several increments to a laterally restrained 1-inch-high sample. Loads were applied in a geometric progression by doubling the previous load, and the resulting deformations were recorded at selected time intervals. The test samples were inundated at a surcharge loading approximately equal to the existing or proposed total overburden pressures in order to evaluate the effects of a sudden increase in moisture content (hydroconsolidation potential). Results of these tests are graphically presented on Plates B-10 through B-26.

Atterberg Limits

An Atterberg limit test (Liquid Limit, Plastic Limit and Plasticity Index) was performed on a selected sample to verify visual classifications. AMEC Earth and Environmental of Anaheim, California, performed the test in general conformance with ASTM D 4318-95. Test results are presented on Table B-1.

Expansion Potential

An Expansion index test was performed on a selected sample of soil materials in accordance with California Building Code Standard 18-2. Expansion potential classifications were determined from C.B.C. Table 18-I-B on the basis of the expansion index values. Test result and expansion potential are presented on Table B-1.

Particle Size Analyses

Particle size analyses were performed on representative samples of site materials in accordance with ASTM D 422-63. The results are presented graphically on the attached Plates B-26.

Boring Number	Depth (feet)	Soil Type	Test Resu	lts
			Maximum Dry Density Optimum Moisture Content	= 121.0 pcf = 12.0%
B-1 6		Silty Clay with Sand (CL)	Expansion Index Expansion Potential Liquid Limit Plastic Limit Plasticity Index	= 40 = Low = 35.3 = 17.1 = 18.2
			Soluble Sulfate Content	= 0.053%
B-1	-1 16 Silty Sand & Maximum Dry Density Gravel (GM-SM) Optimum Moisture Content		= 129.5 pcf = 9.5%	
B-1	26	Bedrock – Clayey Siltstone	Maximum Dry Density Optimum Moisture Content Expansion Index Expansion Potential Liquid Limit Plastic Limit Plastic Index	= 118.5 pcf = 11.5% = 66 = Medium = 37.2 = 16.6 = 20.6
HS-1	0-5	Silty Clay with Sand (CL)	Expansion Index Expansion Potential Soluble Sulfate Content Liquid Limit Plastic Limit Plastic Index	= 38 = Low 0.029% = 32.4 = 16.6 = 15.8
HS-3	HS-3 2-6 Silty Clay with Soluble Sulfate Content (CL) Plasticity Index Expansion Index Expansion Potential Soluble Sulfate Content Plastic Limit Plastic Limit Plastic Limit		= 34 = Low 0.049% = 33.5 = 17.1 = 16.4	

TABLE B-1SUMMARY OF LABORATORY TEST DATA

Sample Location: HS-1	Initial Dry Density (pcf):	106.9			
Sample Depth: 7'	Initial Moisure Content (%):	tial Moisure 16.3 Legend ntent (%):			
Classification:	Final Moisture Content (%):	18.5	■ Sat	turated	
ALBUS-KEE	FE & ASSOCIATES, INC.		Job No: 1489.00		
GEOTE	CHNICAL CONSULTANTS	CONSOLIDATI	Figure No: B-10		

Sample Location:	HS-1	Initial Dry Density (pcf):	108.1			
Sample Depth:	10'	Initial Moisure Content (%):	16.4	Lege □ Fie	end eld Moisture iturated	
Classificatior	1:	Final Moisture Content (%):	18.9	■ Sat		
N	ALBUS-KEEFE &	ASSOCIATES, INC.		Job No: 1489.00		
	GEOTECHNICAL CONSULTANTS		CONSOLIDATI	Figure No: B-11		

Sample Location:	HS-1	Initial Dry Density (pcf):	107.5		
Sample 15' Depth: 15' Classification:		Initial Moisure Content (%):	18.6	Lege	nd Id Moisture
		Final Moisture Content (%):	19.1	■ Sat	turated
1/	ALBUS-KEEFE &	ASSOCIATES, INC.		Job No: 1489.00	
17	GEOTECHNICAL CONSULTANTS		CONSOLIDATIO	Figure No: B-12	

Sample Location:	HS-1	Initial Dry Density (pcf):	103.8				
Sample Depth:	20'	Initial Moisure Content (%):	18.8	□ Legend Field Moisture			
Classification:	a: Final Moisture Content (%):		21.0	■ Sat	turated		
AL AL	BUS-KEEFE &	ASSOCIATES, INC.		Job No: 1489.00			
/K	GEOTECHNICAL CONSULTANTS		CONSOLIDATI	Figure No: B-13			

ALBUS-KEEFE & ASSOCIATES, INC. GEOTECHNICAL CONSULTANTS			CONSOLIDATI	Job No: 1489.00 Figure No: B-14		
Classification:		Final Moisture Content (%):	18.8	■ Sat	turated	
Sample Depth:	5'	Initial Moisure Content (%):	18.5	Legend D Field Moisture		
Sample Location:	HS-2	Initial Dry Density (pcf):	109.9			

Sample Location:	HS-2	Initial Dry Density (pcf):	106.8		
Sample Depth:	10'	Initial Moisure Content (%):	18.5	Legend Field Moisture Saturated	
Classification:		Final Moisture Content (%):	20.0		
ALRUS KEEFE & ASSOCIATES INC					Job No: 1489.00
/K	GEOTECHNICA	L CONSULTANTS	CONSOLIDATIC	JN TEST RESULTS	Figure No: B-15

NOI	RMAL	ST.	RESS	(pst)	

Sample Location:	HS-2	Initial Dry Density (pcf):	106.1		
Sample Depth:	20'	Initial Moisure Content (%):	20.7	Legend Field Moisture Saturated	
Classification:		Final Moisture Content (%):	20.1		
ALBUS-KEEFE & ASSOCIATES, INC.					Job No: 1489.00
GEOTECHN		AL CONSULTANTS	CONSOLIDATIO	JN TEST RESULTS	Figure No: B-16

NORMAL STRESS (psf)

Sample Location:	HS-2	Initial Dry Density (pcf):	109.3		
Sample Depth:	25'	Initial Moisure Content:	20.4	Legend	
Classification:	:	Final Moisture Content:	18.2	■ Satu	irated
ALBUS-KEEFE & ASSOCIATES, INC.					Job No: 1489.00
	GEOTECHNICAL	CONSULTANTS	CONSOLIDATI	SOLIDATION TEST RESULTS Pla	

Sample Location:	HS-3	Initial Dry Density (pcf):	107.3		
Sample Depth:	10'	Initial Moisure Content (%):	17.7	□ Legend □ Field Moisture	
Classification:		Final Moisture Content (%):	20.0	Saturated	
ALBUS-KEEFE & ASSOCIATES, INC.			CONSOLIDATIO		Job No: 1489.00
GEOTECH		CAL CONSULTANTS	CONSOLIDATION TEST RESULTS		Figure No: B-18

NORMAL STRESS (psf)

Sample Location:	HS-4	Initial Dry Density (pcf):	112.9		
Sample Depth:	5'	Initial Moisure Content (%):	15.2	Legend□ Field Moisture	
Classification:		Final Moisture Content (%):	17.7	■ Sat	curated
ALBUS-KEEFE & ASSOCIATES, INC.				ON TECT DECLIPTO	Job No: 1489.00
GEOTECHNICAL CONSULTANTS		AL CONSULTANTS	CONSOLIDATION TEST RESULTS		Figure No: B-19

Sample Location:	HS-4	Initial Dry Density (pcf):	108.5		
Sample Depth:	15'	Initial Moisure Content (%):	18.1	Legend Field Moisture Saturated 	
Classification	:	Final Moisture Content (%):	19.7		
ALRUS-KEEFE & ASSOCIATES, INC.					Job No: 1489.00
GEOTECHNIC		AL CONSULTANTS	CONSOLIDATION TEST RESULTS		Figure No: B-20

Sample Location:	HS-4	Initial Dry Density (pcf):	107.7		
Sample Depth:	20'	Initial Moisure Content (%):	17.6	Legend Field Moisture	
Classification:		Final Moisture Content (%):	18.6	■ Sat	urated
ALBUS-KEEFEE & ASSOCIATES INC					Job No: 1489.00
	GEOTECHNICAL	CONSULTANTS	CONSOLIDATIO	ON TEST RESULTS	Figure No: B-21

Sample Location:	HS-5	Initial Dry Density (pcf):	111.0		
Sample Depth:	10'	Initial Moisure Content (%):	16.0	Legend □ Field Moisture	
Classification:		Final Moisture Content (%):	18.7	■ Sat	turated
ALBUS KEEEE & ASSOCIATES INC					Job No: 1489.00
GEOTECHNICAL		CAL CONSULTANTS	CONSOLIDATIO	JN TEST RESULTS	Figure No: B-22

Sample Location:	HS-5	Initial Dry Density (pcf):	106.8		
Sample Depth:	15'	Initial Moisure Content (%):	18.2	Legend □ Field Moisture	
Classification:		Final Moisture Content (%):	20.9	■ Sat	urated
ALBUS-KEEFE & ASSOCIATES, INC.			CONSOLIDATI	Job No: 1489.00	
	GEOTECHNIC	AL CONSULTANTS	CONSOLIDATION TEST RESULT		Figure No: B-23

Content (%):					Job No: 1489.00
Classification:		Final Moisture Content (%):	15.9	Legend Field Moisture Saturated	
Sample Depth:	5'	Initial Moisure Content (%):	13.9		
Sample Location:	HS-7	Initial Dry Density (pcf):	118.6		

Sample Location:	HS-7	Initial Dry Density (pcf):	104.1				
Sample Depth:	10' Initial Moisure 17.1 Content (%):		Initial Moisure 17.1 Content (%):	□ Legend		Lege	nd Id Moisture
Classification	1:	Final Moisture Content (%):	21.2	■ Sat	turated		
ALBUS-KEEFE & ASSOCIATES, INC.					Job No: 1489.00		
GEOTECHNICAL CONSULTAN		CAL CONSULTANTS	CONSOLIDATI	ION TEST RESULTS	Figure No: B-25		

UNIFIED SOIL CLASSIFICATION
APPENDIX C

EXPLORATION LOGS AND LABORATORY TEST RESULTS BY OTHERS

ALBUS-KEEFE & ASSOCIATES, INC.

SUBSURFACE DATA

	CLIE	NT:	Cor	nstocł		PROJECT: Proposed 65 Lots	W.O.: 8988			
LC	DCAT	ON:	Sar	nta Pa	ula	ELEVATION: 630'±	DATE: 1/26/05			
F	LOCATION: Santa Paula ELEVATION: 630'± D RIG TYPE: 24" Bucket HAMMER WEIGHTS: Kelly Bar Weights D									
	N U B M DD DESCRIPTION A 0 Image: Comparison of the second sec									
	P/1/2	с	×	18.5	110.7	<u>Terrace Deposits</u> : Strong brown SILT with clay, stiff, moist.				
10	NR	С	x			Subrounded coarse gravel to boulder in yellow brown coarse grained SAND with silt and clay matrix, matrix supported, medium dense to dense, moist.	- -			
15	2	С	×	12.0	120.8	Yellow brown subrounded coarse gravel to boulder in yellow brown coarse grained SAND with silt and clay matrix, matrix suported, medium dense to dense, wet.				
20	4/5/7	с	x	16.4	114.7	hard, moist.				
						Total Depth - 23' Groundwater at 20' Caving from 16-20'				
30										
35			•							
40										
45 ADD	DITION	IAL (CON	/ /MEN	TS:	C = Modified California Sampler				

SUBSURFACE DATA

LOG OF BORING GWV2

<u> </u>	CLIENT: Comstock PROJECT: Santa Paula Hospital V							
L	OCATI	ON:	Sar	ita Pa	ula	ELEVATION: 615'±	DATE: 1/27/05	
l	RIG TY	PE.	24"	HAMMER WEIGHTS: Kelly Bar Weights	DROP: 18"			
	N	U	В	M	DD	DESCRIPTION	ATTITUDES	
0						<u>Terrace Deposits</u> : Strong brown GRAVEL and SILT, poorly consolidated, friable, moist. @1' - Strong brown SILT with clay, stiff, moist.		
5	P/1/1	С		17.9	110.2	Strong brown SILT with clay, stiff, moist, porous, trace roots.		
10	P/P/1	С		20.0	109.4	Strong brown SILT with clay, stiff, moist, porous.		
15						Grades to yellow brown GRAVEL with sand and silt, 50% subrounded coarse gravel to boulder (up to 24" diameter), well graded, poorly consolidated, friable, dense, moist (boulders make up 15-20% of clasts).		
20						Boulders predominant (greater than 24" diameter), clasts imbricated to the south, local channels (gravel to cobble).	@17' Channel N80W/4SW	
	2/2/3	C		18.8	111.4	San Pedro Formation: Olive SILTSTONE with thinly bedded friable coarse grained SANDSTONE and gravel to cobble CONGLOMERATE interbeds, hard, moist. Black (manganese?) staining along bedding. Olive thinly bedded coarse grained SANDSTONE interbed within olive SILTSTONE.	@21' scoured contact N50E/17NW @25' B N66E/44SE	
30	4/12	С		15.2	119.6	Groundwater seeping along thinly bedded conglomerate bed within olive SILTSTONE, hard, moist. @30' - Olive SILTSTONE, hard, moist.		
40	6/9/10	с		15.5	119.1	Groundwater seeping along bedding contact between olive SILTSTONE, hard, moist, and friable coarse grained SANDSTONE, caving at 40'.	@40' B N65E/52SE	
45	1				<u> </u>			
ADD	ITIONA	ĹĊ	ÓMI	MENT	S:	C = Modified California Sampler		

L

SURFACE DATA

CLIENT: Comstock	PROJECT: Santa Paula Hospital	W.O.: 8988
LOCATION: Santa Paula	ELEVATION: 615'±	DATE: 1/27/05
RIG TYPE: 24" Bucket	HAMMER WEIGHTS: Kelly Bar Weights	DROP: 18"
N U B M DD	DESCRIPTION	ATTITUDES
CLIENT: Comstock LOCATION: Santa Paula RIG TYPE: 24" Bucket N U B M DD 40 - - - - 40 - - - - 45 - - - - 50 20-6" C 18.2 113.8 55 - - - - 50 20-6" C 18.2 113.8 60 - - - - 60 - - - - 70 - - - - 70 - - - - 70 - - - - 70 - - - - 80 - - - -	PROJECT: Santa Paula Hospital ELEVATION: 615 [±] HAMMER WEIGHTS: Kelly Bar Weights DESCRIPTION Olive SILTSTONE, hard, moist. Total Depth - 55' Groundwater at 29' and 40' Minor caving from 13-17'; caving at and below 40' Downhole logged to 40'	W.O.: 8988 DATE: 1/27/05 DROP: 18" ATTITUDES
85 ADDITIONAL COMMENTS:	C = Modified California Sampler	

SUBSURFACE DATA

5083	SUBSURFACE DATA										
<u>`</u>	CLIE	PROJECT: Santa Paula Memorial Hopsital	W.O.: 8988								
	LOCATI	ON:	Sa	nta Pa	ula	ELEVATION: 610'±	DATE: 2/2/05				
	RIG TY	PE:	8"	ISA		HAMMER WEIGHTS: 140 lbs.	DROP: 30"				
	N	U	B	M	DD	DESCRIPTION	ATTITUDES				
0			İ			Agricultural Fill: Dark brown silty clayey SAND, moist, loose.					
	2/7/10	С		19.2		@2.5' - Terrace Deposits: Dark brown silty CLAY, moist, stiff to					
						medium stiff, trace coarse sands and fine gravels.					
	744400			1.0.1	110.0	D to the total distribution with CLAV mainthand trace light					
5	7/14/23	C		18.1	112.9	Dark brown to dark reddish brown silly CLAY, moisi, hard, trace light					
	0/1//20			176	111 5	Wellowish brown sand verils.					
┣──┥	9/14/30			17.0	111.5	W1.5 - Dark reddish brown clayey ole r to sing oer (1, molet, hard.					
 											
10	8/22/34	c	ļ	17.6	111.2	Dark reddish brown clayey SILT with trace very fine sands, moist, hard.					
	04005					Dealers delich harven eleven Cli T with trees your fine cande, moist hard					
15	6/18/25		S			Dark reddish brown clayey SiLT with trace very line salids, moist, hard.					
20	12/20/22	С		20.2	17.3	Dark reddish brown very fine grained sandy SILT, moist to very moist,					
		ĺ				hard.					
		ļ									
	014 1/00					Durk and dish because way find assigned condy SILT with trace clay, yes					
25	9/14/20		S			maint hard					
I											
30	50-3"	С				No recovery, orange brown fine grained SAND, cobble in shoe.	Logged from				
	5 •						cuttings				
		1									
		1					l aread from				
35	50-1"		S			No recovery, light brown to tan fine grained silly SAND, moist, very	cuttings				
				1			lookiingo				
 		1									
40		1	1		1	Total Depth - 35'					
						No groundwater					
No caving											
45						Playe per 6"	I				
ADD	HIONAL (JON	/IME	INT 5:		Diuws per o C = Modified California Sampler					
						S = Standard Penetration Test					

SUBSURFACE DATA

CLIENT: Comstock PROJECT: Santa Paula Memorial Hospital W.O.: 89									
	CLIE	NT:	Cor	nstock	<u>‹</u>	PROJECT: Santa Paula Memorial Hospital	W.U.: 8988		
	LOCATI	ON:	Sar	ita Pa	ula	ELEVATION: 612'±	DATE: 2/2/05		
	RIG TY	PE:	8" H	ISA		HAMMER WEIGHTS: 140 lbs.	DROP: 30"		
	N	U	В	Μ	DD	DESCRIPTION	ATHUDES		
0						Agricultural Fill: Dark brown silty clayey SAND, moist, loose.			
	-					and the Delither with OLAV match hard from			
l	13/22/40	С		16.4	112.2	@2.5' - <u>Terrace Deposits</u> : Dark brown slity CLAY, moist, nard, trace	1		
						Icoarse sands and tine gravels.			
	11/00/07			170	1126	Dark brown silty CLAY with trace red fine sand lenses, moist, hard.			
	11/20/27			11.2	112.0	trace coarse sands.			
	12/20/26	С		17.4	111.0	@7.5' - Dark brown to dark reddish brown very fine grained sandy			
		ľ				SILT with clay, moist to very moist, hard, continued trace red sand			
						lenses and trace fine gravels.			
10	9/12/20	С		19.3	105.7	Dark reddish brown very fine grained sandy SILT, very moist to wet,			
						hard, trace fine gravels, some sandier lenses with increased moisture.			
15	6/11/12		9			Dark reddish brown interbedded fine grained sandy SILT and silty SAND	,		
- 13	0/11/13		l'			very moist to wet, hard/medium dense, sand layers saturated.			
 									
20] 10/13/18	C		21.4	106.2	Dark reddish brown interbedded fine grained sandy SILT and silty SAND	T		
						very moist to wet, hard/medium dense, sand layers saturated.			
ļ	ł			1					
	4								
25	0112/20		c			Medium brown silty fine grained SAND, grading to light brown very fine			
25	9/12/30			1		grained silty SAND, moist to very moist, dense.	1		
	4								
	50-3"		s			Light brown silty SAND with gravels and cobbles, moist, very dense.			
 	1			1					
30]			{	1				
	1			1					
 	4								
	4			1		Total Depth - 28' refusal on rock			
35	4					Perched groundwater from 10-20'			
┣	-					No caving			
 	1			1					
 	1								
40	ก	}							
]		1						
]								
	4								
	_	1							
ADDITIONAL COMMENTS: Blows per 6"									
ADL	JIIONAL	UU	VIIVIE	-1110.		C = Modified California Sampler			
1						S = Standard Penetration Test			
1									

OG OF EXCA Trench No.	VATION TP1	Logged By: SBS	Date Excavated:	7/11/05	Client: Comstock H	omes	
Depth (ft)		Description					Comme
0 - 2	Terrace Depo	sits: Dark brown SILT, very st	iff, damp, abundant 1-2	?mm pores, abun	dant roothairs.		
2 - 4.5	Grades to dar	k brown SILT with clay, hard,	moist, weakly cemente	d, no visible pore	S		
4.5 - 12	Grades to dar	k brown clayey SILT, very stif	f, moist, abundant pinh	ole pores, easier	to excavate.		
				•			
	Total Donth	10					
	No groundwat	ter					
	No caving Backfilled						
Franhic Log	<u> </u>	- <u>T</u>				T	<u> </u>
			N 35	·E			
		······································	Eula	u			
			ss -	5 -5			
				=			
				_/			
				- /			
			4				

LOG OF EXCA	VATION	Logged By:	SBS	Date Excavated	d: 7/11/05	Client:	Comstock Home	es		
Trench No.	TP2									
Depth (ft)		Description								Comments
0 - 2	Terrace Deposi	its: Dark yellowis	h brown silty SA	ND, dense, dan	np, abundant 1-	2mm pores, abu	indant roots and	rootlets.		
2 - 5	Grades to dark	yellowish brown	SILT with clay, I	hard, moist, wea	akly cemented,	abundant pinhol	e pores.			
5 - 12	Grades to dark	yellow brown Cl	AY with silt, ver	y stiff, moist, abi	undant pinhole	pores, easy to e	xcavate.			
@12'	Subrounded co	earse cobble-bou	Ider clasts of ark	osic sandstone.						
	Total Depth - 1 No groundwate No caving Backfilled	2' 9r		• •		·				
Graphic Log					504/				I	
				- 1 - 1	(-)					
scale 1" =	: 5'	GEOLABS-W	ESTLAKE VILLA	GE W.O.	8988		PLATE	TP2		

		Logged By: SBS	Date Excavated:	7/11/05	Client: Comstock Ho	mes	ň
Depth (ft)		Description					Comments
[•] 0-2	Terrace Deposi	its: Dark vellowish brown claye	y SILT, very stiff, damp	occasional ro	otlets and roothairs.		
0.40			ioni stiff moist shunds	nt pinholo poro	a casy to exervate		
2 - 12	Grades to dark	yellowish brown clayey SILT,	ery still, moist, abunda	nt pinnole pore	es, easy to excavate.		
@12'	Subrounded co	arse cobble-boulder clasts of a	rkosic sandstone.				
			,				
	Total Depth - 1	2'	ŕ				
	No groundwate	- 91					
	Backfilled						
				·	·		
Creative Lagr							
Graphic Log							
			NBOW	,			
``			5-5	- 5			
			N	-			
				- -			
				-			
				-			
				-			
				- /			
scale 1" =	5'	GEOLABS-WESTLAKE VIL	LAGE W.O. 898	38	<u> </u>	183	

,

.

LOG OF EXCA	VATION TP4	Logged By: SBS	Date Excavate	d: 7/11/05	Client:	Comstock Home	es	
Depth (ft)		Description	<u>.</u>	<u> </u>			<u></u>	Commente
0 - 2	Terrace Deposi	its: Dark yellowish brown clayey	SILT, very stiff, o	damp, abundant	1-2mm pores,	abundant roots a	and rootlets.	
2 - 12	Grades to dark	yellowish brown clayey SILT, v	ery stiff, moist, at	oundant pinhole	pores, weakly o	cemented from 2	-4'.	
@12'	Grades to light	olive brown fine grained sandy	SILT with subrou	nded cobble-bou	ulder clasts.			
	Total Depth - 1 No groundwate No caving Backfilled	2' er						
Graphic Log			Ī		antangan dina tagan sa sa sa sa		hr in	
				NGOE				
			5-5	-1 -1	-/			
					. /			
					/			
				=/				
			-	-	<u></u>			
scale 1" =	<u> </u>	I GEOLABS-WESTLAKE VILL	AGE W.O.	8988		PLATE	 TP4	<u> </u>

OG OF EXCA	VATION	Logged By:	SBS	Date Excavated:	7/11/05	Client:	Comstock Homes			
Trench No.	TP5	······								
Depth (ft)		Description								Comments
0 - 6	Terrace Depositivery stiff, damp	<u>ts</u> : Dark yellowi to 2', moist bel	ish brown very cl ow, abundant ro	ayey SILT with sub- othairs and 1-2mm	ounded coarse operations to 2' depth	cobble-bould , abundant p	er clasts (of ar inhole pores b	kosic sandston elow.	e),	
6 - 12	Grades to subro pinhole pores.	ounded cobble-	boulder clasts (c	f angular sandstone	e) in dark yellowi	sh brown cla	yey SILT, very	stiff, moist, ab	undant	
	Total Depth - 12	2'								
	No caving Backfilled									
Braphic Log			1			Ι		1	<u></u>	l T
					NSE					
				<u> </u>	$\sum_{i=1}^{i}$	7				
				<u> - 0</u> -						
				0-0	_					
<u>.</u>				0	,					
scale 1" =	: 5'	GEOLABS-V	VESTLAKE VILL	AGE W.O. 8	3988		PLATE	TP5		

LOG OF EXCA	VATION	Logged By:	SBS	Date Excavated	d: 7/11/05	Client:	Comstock Hom	es		
Trench No.	TP6	55 ,								
Depth (ft)		Description								Comments
								anaval alasta (at	۶	
0 - 12	Terrace Deposi	ts: Dark yellowis	sh brown clayey	SILT with occasi	onal (less than	5%) subrounde	d fine to coarse	gravel clasts (of		
	arkosic sandsto	one), very stiπ, n	noist, abundant	I-2mm pores and		iounuani pinnoi	e pores below.			
	@10' - Occasio	nal (5-10%) sub	orounded cobble	s in dark vellowis	h brown clayey	SILT.				
				- ,	, , , , , , , , , , , , , , , , , , ,					
2										
	Total Depth - 1	2'								
	No groundwate	- r								
	No caving									
	Backfilled									
Graphic Log		T	1	1			<u></u>	1	T	
					,					
				<u>N /0</u>	W					1
				$\int c - c$	S	_ 5 \$				
	!				. 5 '					
						-/				
					0					
					/					
				0	-/]			
					- 6					
				0	0					
					-1					
				1 0 -	- /					
				X-1	-					
	<u> </u>	<u> </u>			L	<u> </u>		<u></u>	1	
<pre> scale 1" = </pre>	= 5'	GEOLABS-W	VESTLAKE VILL	AGE W.O.	8988		PLAIE	126		

LOG OF EXCA	OG OF EXCAVATION		SBS	Date Excavated:	7/11/05	Client: (Comstock Homes			
Trench No.	TP7					<u> </u>				
Depth (ft)		Description								omments
0 - 12	<u>Terrace Deposi</u> (of tan arkosic s 1-2mm pores to	ts: Dark yellowi sandstone and o 2'.	sh brown clayey blive gray graywa	SILT with occasior acke), very stiff, mo	nal (less than 5 ist, abundant	5%) subroundec pinhole pores, a	l fine gravel to coa bundant rootlets,	arse cobble cla roothairs, and	asts	
				,						
	Total Depth - 1 No groundwate No caving Backfilled	2' er								
Graphic Log		Τ	T	T	<u> </u>			<u> </u>		
				1 5 WA	VBDE					
				5050	5-5					
					•					
				6						
scale 1" =	: 5'	GEOLABS-V	VESTLAKE VILL	AGE W.O.	8988		PLATE 1	<u>P7</u>		

.

OG OF EXCA	VATION	Logged By: SB	S Date	Excavated:	7/11/05	Client: (Comstock Hom	es		
Trench No.	TP8							<u> </u>		
Depth (ft)		Description		<u></u>						Comments
0 - 8	Terrace Deposit sandstone and g	<u>s</u> : Dark yellowish b graywacke), abunda	rown clayey SILT w ant pinhole pores, a	rith occasiona Ibundant root	I (less than 5% ets and 1-2mn	6) subrounded n pores to 2' d	l fine gravel to o lepth, easy to e	cobble clasts (of xcavate.	arkosic	
8 - 12	Grades to light o pinhole pores, v	blive brown fine gra ery stiff, moist.	ned sandy SILT wi	th clay and oc	casional (less	than 5%) sub	rounded fine gr	avel clasts, abur	ndant	
	Total Depth - 12 No groundwater No caving Backfilled	2'								
raphic Log	<u> </u>					<u> </u>				
				-	<u>Vio E</u>					
				-) -	se	s — s — °				
				0	0					
coolo 1" -	: 5'	GEOLARS-WES			988		PLATE	TP8		

LOG OF EXCA	VATION	Logged By:	SBS	Date Excavated	d: 7/11/05	Client:	Comstock Homes		
Trench No.	TP9		·				;·		
Depth (ft)		Description							Comments _
0 - 6	Terrace Deposi 5%) cobble-bou and roots and r	its: Dark yellowis Ilder clasts (of a ootlets to 2'.	sh brown clayey Irkosic sandston	SILT with occasi ae and graywacke	onal (5-10%) su e), very stiff, mo	ubround fine to ist, abundant pi	coarse gravel and i nhole pores, abund	nfrequent (less than ant 1-2mm pores	
6 - 11	Grades to dark	yellowish browr	n fine grained sa	andy SILT, very st	iff, moist, abun	dant pinhole po	res.		
	Total Depth - 1 No groundwate No caving Backfilled	1' er							
Graphic Log	1	1	<u> </u>						
					NIOW	-			
				· · · ·		>			
scale 1" =	= 5'	GEOLABS-V	VESTLAKE VILI	AGE W.O.	8988		PLATE TH	9	

.

Laboratory Test	Sumr	nary																W	.0. 8988
Excavation	Depth	Geology	Sample Description	ST	w	DÐ	S	Max	Opt	EI	LL	PI	e	n	WD	SD	BD	Consol	Shear
GWV1 (TD= 23 ft, No GW)	5	Terrace Deposits	SILT with clay	(U)	18.5	111	97	121	12	23			0.51	0.34	131	133	70.1	C-GWV1.5	
	5	Terrace Deposits	SILT with clay	(U)	18.5	111	97	121	12	23			0.51	0.34	131	133	70.1	C-GWV1.5	
	16	Terrace Deposits	arse SAND w/ gravel to boulder clas	(U)	12	121	84						0.38	0.28	135	142	79.3		
	23	San Pedro Formation	fine sandy SILTSTONE	(U)	16.4	115	96						0.46	0.31	134	135	72.8		
GWV2 (TD= 55 ft, No GW)	5	Terrace Deposits	SILT with clay	(U)	17.9	110	93						0.52	0.34	130	133	70.8	C-GWV2.5	
	10	Terrace Deposits	SILT with clay	(U)	20	109	100						0.53	0.35	131	131	68.3	C-GWV2.10	
	10	Terrace Deposits	SILT with clay	(U)	20	109	100			······			0.53	0.35	131	131	68.3	C-GWV2.10	
	21	San Pedro Formation	edded SLTS, SS, and CONGLOMER	(U)	18.8	111	100						0.50	0.34	132	132	69.7		
	30	San Pedro Formation	SILTSTONE	(U)	15.2	120	100						0.4	0.28	138	137	74.5		
	40	San Pedro Formation	coarse SANDSTONE	(U)	15.5	119	100	1					0.40	0.29	138	137	74.1		
	50	San Pedro Formation	SILTSTONE	(U)	18.2	114	100						0.47	0.32	135	133	70.5		
GWV3 (TD= 35 ft, No GW)	2.5	Terrace Deposits	silty CLAY	(U)	19.2			<u> </u>			1	}	1		[ľ	
	5	Terrace Deposits	silty CLAY	(U)	18.1	113	100	1	<u> </u>				0.48	0.32	133	133	70.6	C-GWV3.5	
	7.5	Terrace Deposits	clayey SILT to silty CLAY	(U)	17.6	112	94	1					0.50	0.33	131	134	71.2	C-GWV3.7.5	
	10	Terrace Deposits	clayey SILT with trace fine sand	(U)	17.6	111	94	1			1		0.50	0.33	131	134	71.2		
	20	Terrace Deposits	fine sandy SILT	(U)	20.2	107	97						0.56	0.36	129	130	68		
GWV4 (TD= 28 ft, No GW)	2.5	Terrace Deposits	silty CLAY	(U)	16.4	112	90				1		0.49	0.33	131	135	72.8		
	5	Terrace Deposits	silty CLAY with trace fine sand	(U)	17.2	113	95		1				0.49	0.33	132	134	71.8		S-GWV4.5
	7.5	Terrace Deposits	fine sandy SILT with clay	(U)	17.4	110	90	1					0.52	0.34	129	134	71.5		
	10	Terrace Deposits	fine sandy SILT	(U)	19.3	106	89	1					0.58	0.37	126	132	69.1	C-GWV4.10	
	20	Terrace Deposits	terbedded sandy SILT and silty SAN	(U)	21.4	106	100			1			0.57	0.37	129	129	66.6	C-GWV4.20	
	20	Terrace Deposits	terbedded sandy SILT and silty SAN	(U)	21.4	106	100						0.57	0.37	129	129	66.6	C-GWV4.20	

GEOLABS-WESTLAKE VILLAGE

PLATE LS. 1

Excavation	Depth	Geology	Sample Description	ST	w	DD	S	Max Opt	El	LL	ΡI	e	n	WD	SD	BD	Consol	Shear
LEGEND Depth = Sample D ST = Sample T w = Initial Mo DD = Initial Dr Max = Maximum Opt = Optimum EI = Expansio S = Degree of	epth (ft) ype* oisture Content (y Unit Weight (p n Dry Unit Weig Moisture Conte n Index f Saturation (%)	(%) ocf) ht (pcf) ent (%)	LL = Liquid Limit PI = Plasticity Index e = Void Ratio n = Porosity WD = Initial Wet Unit V SD = Saturated Unit V BD = Bouyant (Subme * Sample Types: (U) = re	Weight Veight (rged) U Iatively	(pcf) pcf) Init W	Veight	(pcf	Consol Shear) - Assumir (S) = SPT;	= C - = S ng wa (B) =	onsolic near T nter un	lation est Dia	Test] agram	Diag (Pla 62.4	ram (F ate No.	'late N)	No.)		

.

GEOLABS-WESTLAKE VILLAGE

PLATE LS. 2

Undisturbed Sample

Sample Location: GWV1

Sample Depth: 5 ft.

Initial Moisture: 18.5 %

Init. Dry Density: 110.7 pcf

Geologic Unit: Terrace Deposits Material: SILT with clay

PLATE C-GWV1.5

GEOLABS-WESTLAKE VILLAGE

Undisturbed Sample

Sample Location: GWV1

Sample Depth: 5 ft.

Initial Moisture: 18.5 %

Init. Dry Density: 110.7 pcf

Geologic Unit: Terrace Deposits Material: SILT with clay

GEOLABS-WESTLAKE VILLAGE

PLATE C-GWV1.5

Undisturbed Sample

Sample Location: GWV2

Sample Depth: 5 ft.

Initial Moisture: 17.9 %

Init. Dry Density: 110.2 pcf

Geologic Unit: Terrace Deposits Material: SILT with clay

GEOLABS-WESTLAKE VILLAGE

PLATE C-GWV2.5

Undisturbed Sample

Sample Location: GWV2

Sample Depth: 10 ft.

Initial Moisture: 20 %

Init. Dry Density: 109.4 pcf

Geologic Unit: Terrace Deposits Material: SILT with clay

.

GEOLABS-WESTLAKE VILLAGE

W.O. 8988

PLATE C-GWV2.10

Undisturbed Sample

Sample Location: GWV2

Sample Depth: 10 ft.

Initial Moisture: 20 %

Init. Dry Density: 109.4 pcf

Geologic Unit: Terrace Deposits Material: SILT with clay

GEOLABS-WESTLAKE VILLAGE

PLATE C-GWV2.10

Undisturbed Sample

Sample Location: GWV3 Sample Depth: 5 ft. Initial Moisture: 18.1 % Init. Dry Density: 112.9 pcf Geologic Unit: Terrace Deposits Material: silty CLAY

GEOLABS-WESTLAKE VILLAGE

PLATE C-GWV3.5

2

CONSOLIDATION RESULTS

Undisturbed Sample

Sample Location: GWV3

Sample Depth: 7.5 ft.

Initial Moisture: 17.6 %

Init. Dry Density: 111.5 pcf

Geologic Unit: Te Material: cla

Terrace Deposits clayey SILT to silty CLAY

W.O. 8988

GEOLABS-WESTLAKE VILLAGE

'LATE C-GWV3.7.5

;

SHEAR TEST RESULTS

	Friction Angle	Cohesion		
Ultimate Shear Stren	gth: 12 deg	1625 psf		
Peak Shear Streng	gth:			
Residual Shear Streng	gth:			
Displacement Ra	ate: 0.01 in/min		Dry Density:	112.6 pc
Sample Location:	GWV4		Moisture:	19.7 %
Sample Depth:	5 ft.		L	
Geologic Unit:	Terrace Deposits			
Material:	silty CLAY with trace	fine sand	$\overline{}$	

Cohesion

GEOLABS-WESTLAKE VILLAGE

PLATE S-GWV4.5

Undisturbed Sample

Sample Location: GWV4

Sample Depth: 10 ft.

Initial Moisture: 19.3 %

Init. Dry Density: 105.7 pcf

Geologic Unit: Terrace Deposits Material: fine sandy SILT

GEOLABS-WESTLAKE VILLAGE

PLATE C-GWV4.10

Undisturbed Sample

Sample Location: GWV4

Sample Depth: 20 ft.

Initial Moisture: 21.4 %

Init. Dry Density: 106.2 pcf

Terrace Deposits Geologic Unit: Interbedded sandy SILT and silty SA Material:

GEOLABS-WESTLAKE VILLAGE

PLATE C-GWV4.20

Undisturbed Sample

Sample Location: GWV4

Sample Depth: 20 ft.

Initial Moisture: 21.4 %

Init. Dry Density: 106.2 pcf

Geologic Unit: Terrace Deposits Material: Interbedded sandy SILT and silty SA

GEOLABS-WESTLAKE VILLAGE

PLATE C-GWV4.20

ł

HYDROCONSOLIDATION/EXPANSION VS. DEPTH Terrace Deposits

Excavation	Depth (ft)	Field DD (pcf)	M (%)	e	S (%)	Volume Change (Terrace Deposits %) Material
GWV1	5	110.7	18.5	0.51	96.9	-0.1	SILT with clay
GWV1	5	110.7	18.5	0.51	96.9	-0.1	SILT with clay
GWV1	5	110.7	18.5	0.51	96.9	0.0	SILT with clay
GWV1	5	110.7	18.5	0.51	96.9	0.0	SILT with clay
GWV2	5	110.2	17.9	0.52	92.7	-0.1	SILT with clay
GWV3	5	112.9	18.1	0.48	101.1	0.1	silty CLAY
GWV3	7.5	111.5	17.6	0.50	94.1	-0.1	clayey SILT to silty CLAY
GWV2	10	109.4	20.0	0.53	101	0.0	SILT with clay
GWV2	10	109.4	20.0	0.53	101	0.0	SILT with clay
GWV2	10	109.4	20.0	0.53	101	0.0	SILT with clay
GWV2	10	109.4	20.0	0.53	101	0.0	SILT with clay
GWV4	10	105.7	19.3	0.58	88.9	-0.1	fine sandy SILT
GWV4	20	106.2	21.4	0.57	100	-1.5 I	nterbedded sandy SILT and silty SAND
GWV4	20	106.2	21.4	0.57	100	-1.5 I	nterbedded sandy SILT and silty SAND
GWV4	20	106.2	21.4	0.57	100	-0.4 I	nterbedded sandy SILT and silty SAND
GWV4	20	106.2	21.4	0.57	100	-0.4 I	nterbedded sandy SILT and silty SAND

DD = Field Dry Density, M = Field Moisture, e = initial void ratio, S = initial degree of saturation, Volume Change = percent of hydroconsolidation(-) or expansion (+)

PLATE C-Hydro..1

GEOLABS-WESTLAKE VILLAGE

ł

HYDROCONSOLIDATION/EXPANSION VS. SATURATION Terrace Deposits

Excavation	Depth (ft)	Field DD (pcf)	M (%)	е	S (%)	Volume Change (Terrace DepositsMaterial
GWV1	5	110.7	18.5	0.51	96.9	-0.1	SILT with clay
GWV1	5	110.7	18.5	0.51	96.9	-0.1	SILT with clay
GWV1	5	110.7	18.5	0.51	96.9	0.0	SILT with clay
GWV1	5	110.7	18.5	0.51	96.9	0.0	SILT with clay
GWV2	5	110.2	17.9	0.52	92.7	-0.1	SILT with clay
GWV3	5	112.9	18.1	0.48	101.1	0.1	silty CLAY -
GWV3	7.5	111.5	17.6	0.50	94.1	-0.1	clayey SILT to silty CLAY
GWV2	10	109.4	20.0	0.53	101	0.0	SILT with clay
GWV2	10	109.4	20.0	0.53	101	0.0	SILT with clay
GWV2	10	109.4	20.0	0.53	101	0.0	SILT with ciay
GWV2	10	109.4	20.0	0.53	101	0.0	SILT with clay
GWV4	10	105.7	19.3	0.58	88.9	-0.1	fine sandy SILT
GWV4	20	106.2	21.4	0.57	100	-1.5 li	nterbedded sandy SILT and silty SAND
GWV4	20	106.2	21.4	0.57	100	-1.5 I	nterbedded sandy SILT and silty SAND
GWV4	20	106.2	21.4	0.57	100	-0.4 I	nterbedded sandy SILT and silty SAND
GWV4	20	106.2	21.4	0.57	100	-0.4 I	nterbedded sandy SILT and silty SAND

DD = Field Dry Density, M = Field Moisture, e = initial void ratio, S = initial degree of saturation, Volume Change = percent of hydroconsolidation(-) or expansion (+)

GEOLABS-WESTLAKE VILLAGE

PLATE C-Hydro.B..1

SHEAR TEST RESULTS

Ultimate Shear Strength:	12 deg	1625 psf		
Peak Shear Strength:				
Residual Shear Strength:				
Displacement Rate: 0).01 in/min		Dry Density:	112
Sample Location: GWV	4		Moisture:	19
Sample Depth: 5 ft.				
Geologic Unit: Terrac	e Deposits			
Material: silty C	LAY with trac	e fine sand	$\overline{\mathbf{n}}$	7

Cohesion

Friction Angle

GEOLABS-WESTLAKE VILLAGE

PLATE S-GWV4.5

Consulting Corrosion Engineers - Since 1959 431 W. Baseline Road Claremont, CA 91711

Table 1 - Laboratory Tests on Soil Samples

Geolabs Santa Paula Hosp. Your #8988, MJS&A #05-0185LAB 17-Feb-05

Sample ID

F			B1	
			@ 5'	
				1337年1月16日1月16日1月1日1月1日1月1日日日日1月1日1日1日1日1日1日1
Resistivity		Units	,	
as-received		ohm-cm	20,000	
saturated		ohm-cm	2,000	
pH			7.9	
Electrical				
Conductivity		mS/cm	0.13	
Chemical Analys	ses			
Cations	o ²⁺	a	40	
calcium	Ca^{-}	mg/kg	40	
magnesium	Mg⁻	mg/kg	27	
sodium	Na	mg/kg	ND	
Anions	~ ~ ⁷ *	~		
carbonate	CO_3^2	mg/kg	ND	
bicarbonate	HCO3.	mg/kg	95	
chloride	Cl'	mg/kg	ND	
sulfate	SO42-	mg/kg	ND	
Other Tests				
ammonium	NH₄ ⁱ⁺	mg/kg	na	
nitrate	NO3 ¹⁻	mg/kg	na	
sulfide	S ²⁻	qual	na	
Redox		mV	na	

Electrical conductivity in millisiemens/cm and chemical analysis were made on a 1:5 soil-to-water extract. mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

Ş	E	ar	th :	Systen	ns :	Southe	ern Ca	alifor	nia 1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325
		G N CT CT I G L(O: NAN NUN DCA	1 ME: Assis MBER: VT ATION: PO	ted -222 er Pl	Living Fa 251-02 an	cility - S.	P. Me	DRILLING DATE: July 6, 2000 DRILLING METHOD: 6 "Hollowstem Auger DRILL: Mobile Drill B-80 LOGGED BY: P. Boales
VERTICAL DEPTH (feet)	SA T HINE	SPT AN	Mod. Calif. ^{III} m	PENETRATION RESISTANCE (BLOWS/6")	SYMBOL	NSCS CLASS	UNIT DRY WT. (pcf)	MOISTURE CONTENT (%)	DESCRIPTION OF UNITS
	X			11/16 8/12		ML/CL ML/CL	108.8 104.4	17.8 16.6	Very fine sandy silt and clay with some organics in upper few feet, very stiff, moist, dark yellowish brown (Soil/Terrace Deposits)
 10 				6/11		CL	106.8	18.3	Very fine sandy silty clay, stiff, very moist, dark yellowish brown (Soil/Terrace Deposits)
 15 				45/50		GM			Gravels and cobbles in clayey silt matrix, very dense, moist, moderate yellowish brown (Terrace Deposits)
20 25 30 35 35 40 									TOTAL DEPTH: 17 Feet (Refusal in Cobbles) No Groundwater Encountered
	_							1	Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradual.

٠

Page 1 of 1

Ş	E	ar	th	System	is :	Southe	ern Ca	alifor	rnia 1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325
BOR PRC IRC JOR	NIN SIE SIE	GN CT CT GL(O: NAN NUN DCA	2 ME: Assis MBER: VT NTION: Pe	ted -222 er Pl	Living Fa 251-02 an	cility - S	.P. Me	DRILLING DATE: July 6, 2000 DRILLING METHOD: 6 "Hollowstern Auger DRILL: Mobile Drill B-80 LOGGED BY: P. Boales
DEPTH (feet)	SA 1 Bulk	MP FYPI	Mod Calif. ^{In} Fi	PENETRATION RESISTANCE (BLOWS/6")	SYMBOL	NSCS CLASS	UNIT DRY WT. (pcf)	MOISTURE CONTENT (%)	DESCRIPTION OF UNITS
	$\overline{\mathbf{N}}$					SM			Silty very fine to fine sand, medium dense, dry, moderate vellowish brown (Soils Disturbed by Agricultural Equipment)
	X			12/22		ML/CL	108.2	16.6	
 5 	Δ			9/15		ML/CL	110.4	15.6	Very fine sandy silt and clay with minor organics in upper few feet, very stiff, moist, dark yellowish brown (Soil/Terrace Deposits)
10				12/13		ML/CL	108.2	15.9	
					* *	GM			Gravels and cobbles in clayey silt matrix, very dense, moist, moderate yellowish brown (Terrace Deposits)
									TOTAL DEPTH: 17 Feet (Refusal in Cobbles) No Groundwater Encountered

lote: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradual.

Page 1 of 1

ê	E	ar	th	Systen	าร	South	ern Ca	alifor	rnia 1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325
BOR PRC RC RC RC		GN CT CT GL(O: NAN NUN DCA	3 ME: Assis MBER: VT ATION: Pe	ted -222 er Pl	Living Fa 251-02 an	cility - S	.P. Me	em. Hosp. DRILLING DATE: July 6, 2000 DRILLING METHOD: 6 "Hollowstem Auger DRILL: Mobile Drill B-80 LOGGED BY: P. Boales
DEPTH (feet)	Bulk A S	SPT TAS	Mod Calif. The Figure 1 m Figure	PENETRATION RESISTANCE (BLOWS/6")	SYMBOL	USCS CLASS	UNIT DRY WT. (pcf)	MOISTURE CONTENT (%)	DESCRIPTION OF UNITS
						SM			Silty VF-F sand, med. dense, dry, mod. yel. bn. (Disturbed)
				15/17		ML/CL	106.3	16.8	
			Z	10/18		ML/CL			Very fine sandy silt and clay with minor organics in upper few feet, very stiff, moist, dark yellowish brown with some pressure faces on sample from 10 feet (Soil/Terrace Deposits)
10 	-			10/14		ML/CL	107.5	19.1	
 15 				12/14		ML/CL	104.1	19.6	
 20 			Z			GM			Gravels and cobbles in clayey silt matrix, very dense, moist, moderate yellowish brown (Terrace Deposits) Note: Too rocky to sample
25 				23/55		TQs	117.8	16.2	Weathered claystone, hard, slightly moist, mottled light olive gray and light olive brown with carbonate veinlets to about 28 feet, light olive brown (only) without carbonates below about 28 feet (Saugus Formation)
30 				25/55		TQs	106.7	19.1	
 35 				30/50		TQs	108.5	19.1	Very fine sandy siltstone, hard, slightly moist, light olive brown (Saugus Formation)
 40 						TQs			Silty claystone, hard, slightly moist, massive, light olive gray and light olive brown (Saugus Formation) LOG CONTINUED ON NEXT PAGE

Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradual.

Ş	Earth Systems Southern California								nia 1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325
BORING NO: 3 (Continued) PROJECT NAME: Assisted Living Facility - S.P Mem. Hosp. ROJECT NUMBER: VT22263-01 BORING LOCATION: Per Plan									n. Hosp. DRILLING DATE: July 6, 2000 DRILLING METHOD: 6" Hollowstem Auger DRILL: Mobile Drill B-80 LOGGED BY: P. Boales
DEPTH (feet)	SA T Bulk	MP YP LdS	Mod Calif. T	PENETRATION RESISTANCE (BLOWS/6")	SYMBOL	USCS CLASS	UNIT DRY WT. (pcf)	MOISTURE CONTENT (%)	DESCRIPTION OF UNITS
 45 				25/50 39/65		TQs TQs	115.1	16.8 18.1	Silty claystone, hard, slightly moist, massive, light olive gray and light olive brown (Saugus Formation)
 50 				30/50		TQS	104.0	<u> 19.9</u>	Very fine sandy clayey siltstone, hard, thinly bedded with about 35° diip, slightly moist, light olive brown and moderate yellowish brown (Saugus Formation)
 555 60 65 65 70 70 75 75 80 80									TOTAL DEPTH: 51 Feet No Groundwater Encountered
Ş	E	Ear	th	Syster	ns	South	ern C	alifo	rnia 1731-A Walter Street, Ventura, California 93003 PHONE. (805) 642-6727 FAX: (805) 642-1325
--	---	-------------------	-------------	---	--------	----------------	-----------------------	-------------------------	--
BOR PRC PRC BOR	BORING NO: 4 PROJECT NAME: Assisted Living Facility - S.P. Mem. Hosp PROJECT NUMBER: VT-22251-02 BORING LOCATION: Per Plan						acility - S	5.P. M	em. Hosp. DRILLING DATE: July 6, 2000 DRILLING METHOD: 6 "Hollowstem Auger DRILL: Mobile Drill B-80 LOGGED BY: P. Boales
O VERTICAL DEPTH (feet)	Bulk	AMF TYP LdS	Mod. Calif.	PENETRATION RESISTANCE (BLOWS/6")	SYMBOL	USCS CLASS	UNIT DRY WT. (pcf)	MOISTURE CONTENT (%)	DESCRIPTION OF UNITS
 5 				11/15 9/17		ML/CL ML/CL	110.9 108.6	16.6 15.5	Very fine sandy silt and clay with some organics in upper few feet, very stiff, moist, dusky yellowish brown in upper few feet, dark yellowish brown below (Soil/Terrace Deposits)
 10 				14/16		CL	98.5	17.4	Very fine sandy silty clay, very stiff, moist to very moist, dark yellowish brown (Soil/Terrace Deposits)
 15 				14/17		CL	99.8	16.3	
20				17/17		SM/GM	106.8	16.6	Clayey silty very fine to fine sand with some gravels, and with some cobble layers, dense to very dense, moist, dark yellowish brown (Terrace Deposits)
23 30 35 35 40 				34/100		<u>SM/GM</u>	102.6	20.5	TOTAL DEPTH: 26 Feet (Refusal in Cobbles) No Groundwater Encountered

ote: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradual.

TABULATED TEST RESULTS

٤.

REMOLDED SAMPLES

BORING AND DEPTH	1 @ 0-5'	2@0-5'	1 & 2 @ 0.5'
USCS	ML/CL	ML/CL	ML/CL
MAXIMUM DENSITY (pcf)	115.0	115.5	
OPTIMUM MOISTURE (%)	12.0	11.5	
COHESION (psf)	250	220	
ANGLE OF INTERNAL FRICTION	24°	27°	
EXPANSION INDEX	43	43	
pH	8.0	7.7	
SOLUBLE CHLORIDES (mg/Kg)	0	72	
RESISTIVITY (OHMs/cm)	1,610	530	
SOLUBLE SULFATES (mg/Kg)	77	230	
RESISTANCE ("R") VALUE			13
GRAIN SIZE DISTRIBUTION (%)			
GRAVEL	0.0	0.0	
SAND	33.6	33.8	
SILT	36.9	40.2	
CLAY	29.5	26.0	
۳.			

RELATIVELY UNDISTURBED SAMPLES

BORING AND DEPTH	302	3@10'	3@25'	3 @ 35'
USCS	ML/CL	ML/CL	Claystone	Siltstone
IN-PLACE DENSITY (pcf)	106.3	107.5	117.8	108.5
IN-PLACE MOISTURE (%)	16.8	19.1	16.2	19.1
COHESION (psf)	890	610	2,610	360
ANGLE OF INTERNAL FRICTION	(35°)	25°	35°	41°
	\bigcirc			
BORING AND DEPTH	3@40'	3@50'	4@2'	4@15'
USCS	Claystone	Siltstone	ML/CL	CL
IN-PLACE DENSITY (pcf)	115.1	104.0	110.9	99.8
IN-PLACE MOISTURE (%)	16.8	19.9	16.6	16.3
COHESION (psf)	2,920	1,530	770!	330
ANGLE OF INTERNAL FRICTION	55°	43°	(46°)	27°

IN-PLACE DENSITIES

				RELATIVE
BORING	& DEPTH	DRY DENSITY	% MOISTURE	COMPACTION
1 @	2'	108.8	17.8	95
- 0	5'	104.4	16.6	91
	10'	106.8	18.3	
2@	2'	108.2	16.6	94
- 0	5'	110.4	15.6	96
	10'	108.2	15.9	94
3@	2'	106.3	16.8	92
	10'	107.5	19.1	93
	15'	104.1	19.6	91
	25'	117.8	16.2	
	30'	106.7	19.1	
	35'	108.5	19.1	
	40'	115.1	16.8	
	45'	115.4	18.1	•-
	50'	104.0	19.9	
4@	2'	110.9	16.6	96
_	5'	108.6	15.5	94
	10'	98.5	17.4	
	15'	99.8	16.3	
	20'	106.8	16.6	
	25'	102.6	20.5	

.

EARTH SYSTEMS SOUTHERN CALIFORNIA

IN-PLACE DENSITIES, MOISTURES, AND SATURATIONS

SG= 2.65

;

Boring/Test Pit	Moist Unit	Dry Unit	Moisture	Degree of
Depth	Weight (pcf)	Weight (pcf)	Content (%)	Saturation (%)
B-3@2'	124.2	106.3	16.8	80
B-3@10'	128.0	107.5	19.1	94
B-3@15'	124.5	104.1	19.6	88
B-4@2'	129.3	110.9	16.6	90
B-4@5'	125.4	108.6	15.5	79
B-4@10'	115.6	98.5	17.4	68
B-4@15'	116.1	99.8	16.3	66
B-4@20'	124.5	106.8	16.6	80
B-4@25'	123.6	102.6	20.5	89
			······································	
			• •	

Aug 1, 2000

ASTM D 1557-91 (Modified)

MAXIMUM DENSITY / OPTIMUM MOISTURE

Job Name:Santa Paula Memorial Hospital Assisted Living FaciliBrocedure Used: ASample ID:1 @ 0 - 5Location:Prep. Method: MoistDescription:Silt

		Sieve Size S	% Retained
Maximum Density:	115 pcf	3/4"	0.0
Optimum Moisture:	12%	3/8"	0.0
		#4	0.0

Moisture Content, percent

ŝ

Aug 1,2000

ASTM D 1557-91 (Modified)

MAXIMUM DENSITY / OPTIMUM MOISTURE

Job Name:Santa Paula Memorial Hospital Assisted Living FaciliBrocedure Used: ASample ID:2 @ 0 - 5Location:Prep. Method: MoistDescription:Silt

		Sieve Size	% Retained
Maximum Density:	115.5 pcf	3/4"	0.0
Optimum Moisture:	11.5%	3/8"	0.0
		#4	0.0

Moisture Content, percent

Aug. 1, 2000

Aug. 1, 2000

Normal Stress, kg/cm.^2

Aug. 1, 2000

Aug. 1, 2000

DIRECT SHEAR080-90 (modified for unconsolidated, undrained conditions)Santa Paula Memorial Hospital Assisted Living FacilityInitial Dry Density: 108.0 pcf3 @ 35Initial Mosture Content: 19.1 %Clayey SiltPeak Friction Angle (Ø): 41°UndisturbedCohesion (c): 0.176 kg/cm^2 (360 psf)

Sample No.	1	2	3	4	Average
Initial					
Dry Density, pcf	107.9	108.6	107.4	108.1	108.0
Moisture Content, %	19.1	19.1	19.1	19.1	19.1
Saturation, %	94	96	92	94	94
At Test					
Moisture Content, %	19.9	19.8	19.4	19.9	19.7
Saturation, %	97	99	94	98	97
Normal Stress, kg/cm^2	0.24	0.47	0.71	0.94	
Peak Stress, kg/cm^2	0.31	0.70	0.77	0.96	
Ultimate Stress, kg/cm^2	0.21	0.43	0.49	0.84	

Horizontal Displacement, inches

Aug. 1, 2000

DIRECT SHEAR	080-90 (modified for uncons	olidated, undrained conditions)
Santa Paula Memorial Hosp	ital Assisted Living Facility	Initial Dry Density: 105.2 pcf
3 @ 2	II	uitial Mosture Content: 16.8 %
Clay		Peak Friction Angle (Ø): 35°
Undisturbed	Cohesior	(c): 0.434 kg/cm ² (890 psf)

Sample No.	1	2	3	4	Average
Initial					
Dry Density, pcf	106.9	109.9	102.0	102.0	105.2
Moisture Content, %	16.8	16.8	16.8	16.8	16.8
Saturation, %	80	87	71	71	77
At Test					······
Moisture Content, %	20.3	18.7	21.6	21.6	20.5
Saturation, %	97	97	91	91	94
Normal Stress, kg/cm^2	0.24	0.47	Ū.94	0.94	
Peak Stress, kg/cm^2	0.60	0.76	1.09	1.09	
Ultimate Stress, kg/cm^2	0.43	0.74	1.09	1.09	

SHEAR vs. NORMAL STRESS DIAGRAM

Aug. 1, 2000

Aug. 1, 2000

Aug. 1, 2000

EARTH SYSTEMS

1.2

1.4

1.6

1.8

2.0

0.8

0.6

1.0

Normal Stress, kg/cm.^2

0.2

0.0

0.0

0.2

0.4

/

Envelope

Aug. 1, 2000

DIRECT SHEAR	080-90 (modified for unconsolidated, undrained conditions)
Santa Paula Memorial Hos	pital Assisted Living Facility Initial Dry Density: 105.8 pcf
4 @ 15	Initial Mosture Content: 16.3 %
Silt	Peak Friction Angle (Ø): 27°
Undisturbed	Cohesion (c): 0.160 kg/cm^2 (330 psf)

Sample No.	1	2	3	4	Average
Initial					
Dry Density, pcf	103.8	105.9	105.9	107.5	105.8
Moisture Content, %	16.3	16.3	16.3	16.3	16.3
Saturation, %	72	76	76	79	76
At Test					
Moisture Content, %	21.4	19.5	20.1	20.5	20.4
Saturation, %	95	91	94	100	95
Normal Stress, kg/cm ²	0.24	0.49	0.73	0.98	
Peak Stress, kg/cm^2	0.20	0.51	0.58	0.60	
Ultimate Stress, kg/cm^2	0.20	0.47	0.56	0.60	

F-109

SCATTER DIAGRAM OF DIRECT SHEAR DATA FOR SAUGUS FORMATION

CONSOLIDATION TEST

Santa Paula Memorial Hospital Assisted Living Facilibritial Dry Density:103.7 pcf1 @ 5Initial Moisture, %:16.6%ClaySpecific Gravity:2.67 (assumedRing SampleInitial Void Ratio:0.607

ASTM D 2435-90

Aug 1, 2000

CONSOLIDATION TEST

ASTM D 2435-90

Santa Paula Memorial Hospital Assisted Living Facilibritial Dry Density:113.8 pcf2 @ 5Initial Moisture, %:15.6%ClaySpecific Gravity:2.67 (assumedRing SampleInitial Void Ratio:0.465

Aug 1, 2000

CONSOLIDATION TEST

ASTM D 2435-90

Santa Paula Memorial Hospital Assisted Living Facilibritial Dry Density:108.8 pcf4 @ 5Initial Moisture, %:15.5%ClaySpecific Gravity:2.67 (assumedRing SampleInitial Void Ratio:0.533

APPENDIX D

STABILITY ANALYSES

ALBUS-KEEFE & ASSOCIATES, INC.

Computer Program

Þ

Stability analyses were performed using the computer program SLOPE/W (Ver. 4.23) by Geo-Slope. The program analyzes slope stability problems by a two-dimensional limit equilibrium methods including Bishop's, Janbu, Morgenstern & Price, and general limit equilibrium (GLE). The particular method used for each analysis is indicated on the output plots.

Soil strength can be modeled in a variety of ways including standard Mohr-Coulomb, bilinear Mohr-Coulomb, and general shear strength relationships. Where materials strengths have anisotropic properties, the program allows the strength to be modeled by introducing a strength function. The function allows the user to define a weighting factor that is applied to the standard Mohr-Coulomb strength depending upon the angle of inclination of the slice base. With this function, anisotropic conditions typically found in bedrock materials can be modeled.

Potential failure surfaces are determined by circular surfaces, block-specified surfaces, or fullyspecified surfaces. For circular surfaces, the user provides a grid of radius points and upper and lower bounds for the radius search. The program calculates the factor of safety for each radius grid point and all increments between the upper and lower boundaries. For block-specified surfaces, the user provides two grids of points, one for points of entry and one for points of exit. The program calculates the factor of safety for all possible combinations of surfaces defined by connecting pairs of grid points. For fully-specified surfaces, the user defines a specific failure surface for which the program calculates the factor of safety. The program can also model other factors such as groundwater, earthquake loads, and external loads.

Shear Strengths

The shear strengths used in our analyses were based on direct shear testing and previous experience. The strength values used are summarized In Table D-1 below:

Material	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)	
Compacted Fill (Qcaf)	128 250		25	
Terrace Deposit (Qt)	128	350	26	
Terrace Deposit (Qt) Temporary Cut	128	400	26	
Bedrock (TQsa)	130	1500	28	

TABLE D-1Summary of Shear Strengths

Summary of Results

Results of the analyses are summarized in Table D-2 below. Plots of the results are attached as Plates D-1 through D-6.

Section	Search Type	Analysis Method	Plates	Static Factor of Safety	Seismic Factor of Safety
50' Fill Slope 2H:1V	Circular	Bishop	D-1 & D-2	1.54	1.11
C-C'	Circular	Bishop	D-3 & D-4	1.63	1.24
C-C' Detail	Circular	Bishop	D-5 & D-6	1.81	1.38
D-D'	Circular	Bishop	D-7 & D-8	1.81	1.34
F-F'	Circular	Bishop	D-9 & D-10	1.54	1.26
G-G`	Circular	Bishop	D-11 & D-12	1.51	1.10
G-G' Temp. Cut	Circular	Bishop	D-13	1.25	-

TABLE D-2Summary of Stability Analyses

Section C - Global Segmental Wall - Static Case 1489.00 - Comstock - Santa Paula Site File Name: 1489sC1.slp Last Saved Date: 5/3/2006 Analysis Method: Bishop Seismic Coefficient: (none)

Section C - Global Segmental Wall - Seismic Case 1489.00 - Comstock - Santa Paula Site File Name: 1489sC1s.slp Last Saved Date: 5/3/2006 Analysis Method: Bishop Seismic Coefficient: Horizontal Cs=0.15

PLATE D-9

Section F - Tank Slope - Seismic Case 1489.00 - Comstock - Santa Paula Site File Name: 1489_Fs.slp Last Saved Date: 5/3/2006 Analysis Method: Bishop Seismic Coefficient: Horizontal

PLATE D-11

PLATE D-12
Section G - Native Slope - Temporary Cut 1489.00 - Comstock - Santa Paula Site File Name: 1489_G3.slp Last Saved Date: 5/3/2006 Analysis Method: Bishop Seismic Coefficient: (none)

IF ALL Qt

APPENDIX E

SETTLEMENT AND PILE ANALYSES

-

SETTLEMENT CALCULATIONS

J.N.	1489.00
Client:	Comstock Homes
Location:	Typical Footing on Qt

Rectangular Load (NAVFAC DM 7.1-165, Boussinesq)

Soil Density (psf)	125
Sat. Density (psf)	125
Depth to Water (ft)	100
Footing Depth (ft)	1.5
Footing width (ft)	1.25
Footing length (ft)	65
Bearing pressure (psf)	2000
Layer Thickness (ft)	1
Starting Depth (ft)	1.5
Rigidity Factor	0.7
Overconsolidation Pressure (psf)	1875

Depth	Sigma o	Delta	Sigma f	Pc	Ce	Cc	Sett.	Cumul.
		Sigma						Sett.
(ft)	(psf)	(psf)	(psf)				(in)	(in)
2	250	814	1064	2125	0.008	0.057	0.04	0.04
3	375	545	920	2250	0.008	0.057	0.03	0.07
4	500	406	906	2375	0.008	0.057	0.02	0.09
5	625	322	947	2500	0.008	0.057	0.01	0.10
6	750	267	1017	2625	0.008	0.057	0.01	0.11
7	875	228	1103	2750	0.008	0.057	0.01	0.11
8	1000	199	1199	2875	0.008	0.057	0.01	0.12

_

SETTLEMENT CALCULATIONS

J.N.	1489.00
Client:	Comstock Homes
Location:	20' Fill at Lot 66

Triangular Load (NAVFAC DM 7.1-165, Boussinesq)

Soil Density (psf)	125
Sat. Density (psf)	125
Depth to Water (ft)	100
Width of Load Base (ft)	225
Distance to Peak of Load from Left (175
Distance to Point from Left (ft)	145
Peak Pressure (psf)	2540
Layer Thickness (ft)	2
Starting Depth (ft)	0
Rigidity Factor	1
Overconsolidation Pressure (psf)	1875

	Depth	Sigma o	Delta	Sigma f	Pc	Ce	Cc	Sett.	Cumul.
			Sigma						Sett.
_	(ft)	(psf)	(psf)	(psf)				(in)	(in)
-	1	125	2106	2231	2000	0.008	0.057	0.30	0.30
	3	375	2105	2480	2250	0.008	0.057	0.21	0.50
	5	625	2105	2730	2500	0.008	0.057	0.17	0.67
	7	875	2103	2978	2750	0.008	0.057	0.14	0.81
	9	1125	2101	3226	· 3000	0.008	0.057	0.12	0.94
	11	1375	2097	3472	3250	0.008	0.057	0.11	1.05
	13	1625	2092	3717	3500	0.008	0.057	0.10	1.15
	15	1875	2086	3961	3750	0.008	0.057	0.09	1.24
	17	2125	2078	4203	4000	0.008	0.057	0.08	1.32
	19	2375	2069	4444	4250	0.008	0.057	0.08	1.40
	21	2625	2058	4683	4500	0.008	0.057	0.07	1.47
	23	2875	2046	4921	4750	0.008	0.057	0.06	1.53
	25	3125	2033	5158	5000	0.008	0.057	0.06	1.59
	27	3375	2018	5393	5250	0.008	0.057	0.05	1.64
	29	3625	2003	5628	5500	0.008	0.057	0.05	1.69
	31	3875	1986	5861	5750	0.008	0.057	0.04	1.73
	33	4125	1969	6094	6000	0.008	0.057	0.04	1.77
	35	4375	1951	6326	6250	0.008	0.057	0.04	1.81
	37	4625	1933	6558	6500	0.008	0.057	0.03	1.84
	39	4875	1913	6788	6750	0.008	0.057	0.03	1.87

SETTLEMENT CALCULATIONS

J.N.	1489.00
Client:	Comstock Homes
Location:	20' Fill at Lot 66

Triangular Load (NAVFAC DM 7.1-165, Boussinesq)

Soil Density (psf)	125
Sat. Density (psf)	125
Depth to Water (ft)	100
Width of Load Base (ft)	225
Distance to Peak of Load from Left (145
Distance to Point from Left (ft)	145
Peak Pressure (psf)	2540
Layer Thickness (ft)	2
Starting Depth (ft)	0
Rigidity Factor	1
Overconsolidation Pressure (psf)	1875

Depth	Sigma o	Delta	Sigma f	Pc	Ce	Cc	Sett.	Cumul.
		Sigma						Sett.
(ft)	(psf)	(psf)	(psf)				(in)	(in)
1	125	2526	2651	2000	0.008	0.057	0.40	0.40
3	375	2494	2869	2250	0.008	0.057	0.29	0.69
5	625	2463	3088	- 2500	0.008	0.057	0.24	0.93
7	,875	2432	3307	2750	0.008	0.057	0.21	1.14
9	1125	2401	3526	3000	0.008	0.057	0.18	1.32
11	1375	2370	3745	3250	0.008	0.057	0.16	1.47
13	1625	2339	3964	3500	0.008	0.057	0.14	1.61
15	1875	2308	4183	3750	0.008	0.057	0.12	1.73
17	2125	2278	4403	4000	0.008	0.057	0.11	1.84
19	2375	2247	4622	4250	0.008	0.057	0.10	1.94
21	2625	2217	4842	4500	0.008	0.057	0.09	2.03
23	2875	2188	5063	4750	0.008	0.057	0.08	2.11
25	3125	2158	5283	5000	0.008	0.057	0.07	2.18
27	3375	2129	5504	5250	0.008	0.057	0.06	2.25
29	3625	2100	5725	5500	0.008	0.057	0.06	2.30
31	3875	2072	5947	5750	0.008	0.057	0.05	2.36
33	4125	2044	6169	6000	0.008	0.057	0.05	2.41
35	4375	2016	6391	6250	0.008	0.057	0.04	2.45
37	4625	1989	6614	6500	0.008	0.057	0.04	2.49
39	4875	1962	6837	6750	0.008	0.057	0.03	2.52

. .

PLATE E-6

For active earth pressure: USE 40 pcf $F = \frac{40 \cdot 14^2}{2} = 3,920 \text{ lbs/ff}$ active pressure is greater ... USE 3,920 lbs/ff For pile spacing of 10' c/c Horz. load per pile, $F_p = 3920 \cdot 10 = 40^{k}$ For 30" concrete pile, 34' long, deflection is 0.8" Oke (see attached plate E-9 for deflection analysis)

C22-147 50 SHEETS CAMPAG 22-142 100 SHEETS 22-144 200 SHEETS Shear Pin Design - Required Support - Static Case 1489.00 - Comstock - Santa Paula Site File Name: 1489_SP1.slp Last Saved Date: 5/3/2006 Analysis Method: Bishop Seismic Coefficient: (none)

Shear Pin Design - Required Support - Seismic Case 1489.00 - Comstock - Santa Paula Site File Name: 1489_SP1s.slp Last Saved Date: 5/3/2006 Analysis Method: Bishop Seismic Coefficient: Horizontal

Deflection of Pile Adjacent Slope (Poulos 1976)

J.N.	1489.00
Client:	Comstock Homes
Description:	Bluff Shear Pins

Pile Diameter (ft)	2.50
Pile Length (ft)	20.00
Soil Modulus (psi)	2484.00
Unit weight (pcf)	128.00
Phi (deg.)	28.00
Pile Modulus (psi)	3.00E+06
Distance from Slope (ft)	1.00
Slope Angle from horz (deg)	38.00
H (kips)	40.00
Hu (kips)	141.74
H/Hu	0.28
Eccentricity (ft)	5.00
Moment of Inertia (ft^{4})	1 02
	0.01447
	8.00
z/d	0.00
	4.00
	1.00
InM	8.00
CoM	0.00
A ANN/A	1 1 501
En	1.50

SPT (ML)	45	E (psi) =	2484
SPT (SP)	0	E (psi) =	0
SPT (SW)	0	E (psi) =	0
SPT (GP/GW)	0	E (psi) =	0
Qc (TONS/FT^2)	0	E (psi) =	0
Rel. den. (%)	75	E (psi) =	2967

Deflection (in.)

0.8243

APPENDIX F

TYPICAL GRADING DETAIL

ALBUS-KEEFE & ASSOCIATES, INC.

APPENDIX C

ALBUS-KEEFE AND ASSOCIATES

Recommendations for Stabilizations of Upper Easterly Bluff Proposed 75-Lot Residential Development Western Terminus of 10th Street, Santa Paula, California August 31, 2006

7290.200.101 March 10, 2008 Revised May 23, 2008

ALBUS-KEEFE & ASSOCIATES, INC.

GEOTECHNICAL CONSULTANTS

August 31, 2006 J.N.: 1489.00

Ms Tiffany Sukay Comstock Homes 321 12th Street, Suite 200 Manhattan Beach, California 90266

Subject: Recommendations for Stabilizations of Upper Easterly Bluff, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California

References: Second Response to city of Santa Paula Review, dated July 25, 2006, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated July 31, 2006

Supplemental Geotechnical Investigation and Rough Grading Plan Review, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated May 3, 2006

Dear Ms Sukay:

The upper portion of the easterly bluff has been recognized as not providing a factor of safety greater than 1.5 against gross failure. This condition was discussed in our referenced Supplemental Geotechnical Investigation Report. Subsequent responses to the city of Santa Paula have lead us to recommend removing the terrace deposits that comprise the upper bluff and replacing the natural slope with a 1 to 1 fill slope reinforced with geogrids. While a general feasibility evaluation was performed for our referenced Second Response, this document provides more supporting analyses and details on the recommended mitigation.

The grading plans have been revised by DRC to reflect the removal and replacement of the slope down to at least the daylight of the terrace deposits. The plan depicting these revisions has been attached herein as Plate 1. We have performed slope stability analyses of the conditions along the bluff using the computer program Slope/W. Details of the program and methodology were provided in our referenced Supplemental Geotechnical Investigation.

Three cross sections have been prepared to depict conditions along the bluff and were used for stability analyses. The analyses conservatively assume a weathered bedrock zone on the slope face below the terrace deposit that is 10 feet deep. Significant field mapping augmented by hand augers at selected locations suggest the thickness is probably no more than 7 feet. Shear strengths for compacted fill and intact bedrock were established in our referenced Supplemental Geotechnical Investigation

Report and used herein. Shear strengths for the weathered bedrock were based on reducing the cohesion of intact bedrock to a value equivalent to a soil material. Strengths used in our analyses are summarized below.

Material	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)
Compacted Fill (Qcaf)	128	250	25
Weathered Bedrock (TQsa)	128	300	28
Bedrock (TQsa)	130	1500	28

Summary of Shear Strengths

Our analysis indicates that global stability can be achieved with the installation of Mirifi 10XT geogrids having lengths that are approximately equal to the height of the 1 to 1 fill slope. Factors of safety for static and seismic cases are greater than 1.5 and 1.1, respectively. Results of our analyses are provided in Plate A-1 through A-6.

Facing stability will require the installation of additional geogrids. We are recommending the use of Mirifi 2XT geogrids that are embedded into the slope face 8 feet then wrap the outer slope face with a minimum embedment of 3 feet. These geogrids should be provided every 2.5 feet vertically. Our proposed layout is provided on Plate 1 and a schematic of the system is provided on Plate 2.

We appreciate this opportunity to be of continued service to you. If you have any questions regarding this correspondence, please feel free to call.

Sincerely,

ALBUS-KEEFE & ASSOCIATES, INC.

David E. Albus Principal Engineer GE 2455

Enclosures:

Plate 1- Geogrid Layout Map Plate 2- Schematic Layout of Geogrid Slope Plates A-1 through A-6- Stability Analyses for Geogrid Slope

SCHEMATIC LAYOUT OF GEOGRID SLOPE

APPENDIX A

STABILITY ANALYSES

Section I - 1:1 Geogrid Slope - Static Case 1489.00 - Comstock - Santa Paula Site File Name: 1489s36.slp Last Saved Date: 8/30/2006 Analysis Method: Bishop Seismic Coefficient: (none)

Section I - 1:1 Geogrid Slope - Seismic Cas 1489.00 - Comstock - Santa Paula Site File Name: 1489s36s.slp Last Saved Date: 8/30/2006 Analysis Method: Bishop Seismic Coefficient: Horizontal _{Cs=0.15}

PLATE A-5

PLATE A-6

APPENDIX D

KANE GEOTECH INC.

Santa Paula Debris Flow Investigation Ventura County, California July 3, 2007

7290.200.101 March 10, 2008 Revised May 23, 2008

Comstock Homes

Santa Paula Debris Flow Investigation

Ventura County, California

July 3, 2007

Job No. GT06-24

Prepared for: Comstock Homes 321 12th Street Manhattan Beach, CA 90266

P.O. Box 7526 Stockton, California 95267 Tel: 209-472-1822 Fax: 209-472-0802 www.kanegeotech.com

THIS PAGE INTENTIONALLY LEFT BLANK

Comstock Homes

Santa Paula Debris Flow Investigation

Ventura County, California

TABLE OF CONTENTS

T/	ABLE C	OF CONTENTS	-
1.	INTR 1.1 1.2	ODUCTION Purpose Scope of Work	1 1 1
2.	SITE 2.1 2.2	DESCRIPTION	2 2 2
3.	SITE	EVALUATION	3
4.	DEBF 4.1 4.2	RIS FLOW BARRIER DESIGN	3 3 4
5.	RES	ULTS	5
6	CON	ICLUSIONS AND RECOMMENDATIONS	5
7	REF	ERENCES	7
8	LIMI	TATIONS	8
A	PPEN	DIX A – DEBRIS FLOW CHUTE AND BARRIER LOCATION MAP	9
A	PPEN	DIX B – DEBRIS FLOW PROTECTION SYSTEM CALCULATIONS 1	3

-111-

THIS PAGE INTENTIONALLY LEFT BLANK

KANE GeoTech, Inc.

Comstock Homes

Santa Paula Debris Flow Investigation

Ventura County, California

Job No. GT06-24

1. INTRODUCTION

The project consists in determining the design input required for debris flow barriers and slope stabilization below a proposed development of single/ two-story family homes. The project site is located in Santa Paula, Ventura County, California, Figure 1. The family homes will be constructed near the ridge of a slope, above and to the west of the existing family homes. A geotechnical investigation by Albus-Keefe & Associates, (Albus, 2006) indicated that the potential for shallow debris flows exists on the slope. The geotechnical consultant has recommended the construction of a debris flow mitigation system at the base of the slope.

1.1 Purpose

The purpose of this report is to present the analysis of the site and design requirements for barriers utilizing Geobrugg UX/VX Debris Flow Protection System technology. As part of the construction process a debris flow barrier will be required.

1.2 Scope of Work

The scope of services provided by KANE GeoTech, Inc. were the following:

- Site visit and data collection. KANE GeoTech, Inc. personnel made site visit(s) to the subject property and collected the data necessary to design a debris flow barrier for the site.
- 2. Analysis and Design. We reviewed existing reports and our own field data to determine the energies and barrier heights necessary to produce a debris flow design that will mitigate the debris flow hazard at the site.

Figure 1. Project Site in Santa Paula, Ventura County, California.
Report and Engineering Drawings. Upon receiving approval for the recommended systems, KANE GeoTech, Inc. will provide design drawings stamped by a licensed California civil engineer experienced in soil and rock slope stability and debris flow mitigation. These plans will be suitable for obtaining bids for construction of the barrier.

2. SITE DESCRIPTION

2.1 General

The project site is in Santa Paula, Ventura, California, latitude 34°22'05.96"N, longitude W119°03'54.90". The elevation is about 570-ft MSL at top of slope. The site is located in the City of Santa Paula, Ventura County, California, and is in the Transverse Ranges geomorphic province. The ground surface slopes downward from the proposed development and contains three relatively steep east-west trending swales. The slope below the proposed development decreases from about 0.5H:1.0V near the crest to about 2.0 H:1V at the base. The slope is covered with vegetation including grasses, shrubs, and trees, Figure 2. The top of the ridge is the area of proposed developed with homes lining the ridge. Total relief averages approximately 125-ft from the top of the ridge to the bottom of the slope, which is developed with single family homes. The project site is down-slope from the proposed development.

2.2 General Geology

The project site is located in the southern Transverse Ranges geologic province. Geologic materials consist of sandstone, siltstone, and claystone of the Saugus Formation capped by terrace deposits. The terrace deposits contain numerous rounded sandstone cobbles up to 1.5-ft in the largest dimension. These cobbles are readily visible in the exposed slopes, Figure 3. Surficial soil is silty sand and soft. The soil is composed of silt, sandy silt, fine-grained

Figure 2. Oblique view of slopes at the site.

sand, and fine gravel. There are no bouldersize materials on the site.

The site is not in an Alquist-Priolo Zone, although it is within 30-km of six faults zones, Table 1. These faults are capable of producing strong ground motions that could trigger a debris flow under certain conditions.

3. SITE EVALUATION

KANE GeoTech, Inc. personnel visited the site on July 6, 2006 and June 4, 2007. The site was evaluated by physically traversing the property. Photographs were taken

of the slope and slope features. Details and data were recorded on field map and field book.

After evaluating the site it was determined that three locations at the site have the potential to produce debris flow hazard. Chutes were labeled A, B, and C. The chute locations can be found in Appendix A.

All chutes terminated close to the homes located at the base of the terrace. Figures 4 and 5 show the chutes as viewed from below.

Figure 3. Terrace materials at project site.

TABLE 1 Faults That Could Trigger Debris Flows

Fault Name	Distance From Fault (km)
Oakridge Fault	2.5
Ventura-Pitas Point Fault	5
Simi-Santa Rosa Fault	5
San Cayetano Fault	12.5
Red Mountain Fault	27
Mission Ridge-Arroyo Parida- Santa Ana Fault	30
Santa Ynez Fault (east segment)	30

4. DEBRIS FLOW BARRIER DESIGN

4.1 Background

A Geobrugg Debris Flow Protection System (Roth, 2003) was chosen for the project site. Geobrugg is one of the few manufacturers of debris flow protection systems and has been involved in substantial research regarding debris flow mitigation (Duffy and Peilia, 1999). The basic debris flow protection system consists of a rockfall protection system modified to resist the velocities and energies of aerial loads unique to debris flows.

Figure 4. Debris flow Chute A.

Support ropes transfer impact loads on the ring nets to the ground. As in a conventional rockfall protection system, impact energy is absorbed by the net braking elements in the support ropes. In addition, the ring net barrier in the system allows the passage of water and fine particles, eliminating the need to consider any bulking factor when determining barrier height.

4.2 Potential Debris Flow Volumes

Existing methods for determining debris flow volumes are meant for large watersheds and large-scale structures such as basins and bridges impacted by timber impacts (Gatwood,

Figure 5. Debris flow Chutes B and C.

et al., 2000; Bradley, et. al., 2005). They are unsuitable for small debris flow basins and chutes.

Conventional debris flow barrier design is based on field observations (Duffy and Peilia, 1999) and full-scale testing in controlled situations (De Natale, et al., 1996; Muraishi and Sano, 1997). Other work related to the design of debris flow protection systems includes Mitzuyama, et al. (1992) and Rickenmann (1999, 2001), and PWRI (1988).

Geobrugg (2003) has developed a design methodology for chutes suitable for its debris flow barrier systems. The first step in design is to determine the total debris flow volume. Then the resulting peak discharge is calculated. From the peak discharge, the flow velocity can be estimated. Once the mass and velocity are known, the design energy can be determined. Finally, the design height is calculated. It should be noted that debris flows tend to be linear features so that after an initial dynamic impact, additional surges add only a quasi-static load to the net, instead of a dynamic load. In addition, the debris material already impacted and dewatered on the net serves to absorb some of the energy of subsequent surges. The result is that much of the debris flow material is not against the net, resulting in decreased energy absorption and height requirements. An example calculation and the actual debris flow protection system values for the project are given in Appendix B.

Limits of potential debris flow areas were estimated by Albus-Keefe & Associates, Inc. (Keefe, 2007) based on field observations and topographic expression from a LIDAR topographic map provided by FUGRO West, Inc. According to Albus-Keefe, isolated surficial failures within the defined debris flow chutes vary in thickness from a few inches to several feet. For barrier fence design purposes, Albus-Keefe has suggested that a 3-ft thick column of soil could fail within the entire area of Chutes A, B, and C. Since it is unlikely that the entire area of any one chute would fail during a single event, the volumes of soil determined for barrier fence design should be a conservative estimate that takes into account multiple events with varying thicknesses (Albus-Keefe, 2007). The total cumulative potential volumes of the debris flows used in the analyses are given in Table 2.

Chute	Soil	Area (ft²)	Total Volume (ft³)
А	Silt with 1'x1'x0.5' Cobbles	5,032	15,096
В	Silt with 1'x1'x0.5' Cobbles	10,793	32,379
С	Silt With 1'x1'x0.5' Cobbles	5,705	17,115

TABLE 2	Debris Flow	Chutes an	d Estimated	Volumes
---------	-------------	-----------	-------------	---------

5. RESULTS

Debris flow analyses, Appendix B, indicated that each of the three debris flow chutes can be mitigated with the installation of a single barrier for a total of three barriers. The analyses indicated that barriers should be placed near the mouth of the chutes just inside the property line, Figure 6. These barriers can be either Geobrugg UX (Figure 7) or VX (Figure 8) barrier depending the shape of the chutes at the finalized barrier locations.

6. CONCLUSIONS AND RECOMMENDATIONS

The installation of Geobrugg Debris Flow Protection Systems as described in this report will meet the debris flow protection requirements of the proposed project.

Figure 6. Debris flow barrier locations and sizes.

Figure 7. Geobrugg UX debris flow barrier (Source: Geobrugg Fatzer, AG).

Figure 8. Geobrugg VX debris flow barrier (Source: Geobrugg Fatzer, AG).

 Construction recommendations. All work should be constructed by competent construction personnel. Qualified installers should be contacted to obtain more accurate pricing. For this particular project we recommend the following installers both of whom has significant experience in installing Geobrugg Debris Flow Protection Systems We recommend the following contractors:

AIS Construction Company P.O. Box 239 Carpenteria, CA 93014 Tel 805-684-4344 Fax 85-566-0109 www.aisconstruction.com Hi-Tech Rockfall Construction, Inc. P.O. Box 674 Forest Grove, OR 97116 Tel 503-357-6508 Fax 503-357-7323 www.hitechrockfall.com

On approval by City of Santa Paula officials, KANE GeoTech, Inc. will supply shop drawings, stamped by a Civil Engineer registered in California, for the purpose of obtaining bids for the construction. These drawings will incorporate the results of the analyses described in this report.

- Cost estimate. We estimate the installed cost of the recommended system to be as shown in Table 3. The total cost of the project in its current configuration will be approximately \$158,500.
- 3. Maintenance. As a minimum, the fence and the area behind it should be inspected annually and repaired as necessary. Clean out may not be necessary as the barriers are capable of storing the entire predicted debris flow volumes. In any event, a full barrier will mitigate any additional movement of upper slope material by significantly changing the gradient and removing the energy from any subsequent flows. Follow the manufacturer's maintenance recommendations and procedures.

Chute	Length ft	Height ft (m)	Energy ft-tons	Geobrugg Debris Flow Protection System	Unit Cost (Ft)	Estimated Cost
А	50	10	192	RXI-100	\$1,000	\$50,000
В	50	10	369	RXI-100	\$1,000	\$50,000
С	45	15	236	RXI-100	\$1,300	\$58,500
						\$158,500

TABLE 3	Calculated	Debris	Flow Des	an Parameters	s and	Estimated	Installed Costs
---------	------------	--------	----------	---------------	-------	-----------	-----------------

NOTE: Design energies and barrier heights are used, along with the location of the debris flow mitigation structures, to determine type of mitigation used. Reported design energies and bounce heights alone do not solely determine the mitigation strategy or debris flow protection system type.

7. REFERENCES

Albus, D. (2006). Personal Communication. July 2006.

Bradley, J. B., Richards, D. L., Bahner, C. D. (2005). "Debris Control Structures – Evaluation and Countermeasures." Hydraulic Engineering Circular 9, 3rd Edition, Federal Highway Administration, FHWA-IF-04-016 HEC-9.

Duffy, J. D., and Peilia, A. (1999). "Case Studies on Debris and Mudslide Barrier Systems in California."

- De Natale, J. S. et al. (1996). "Response of the Geobrugg Cable Net System to Debris Flow Loading." Report, California Polytechnic State University, San Luis Obispo, California.
- Gatwood, E., Pedersen, J., and Casey, K. (2000) "Los Angeles District Method for Prediction of Debris Yield" U.S. Army Corps of Engineers, Los Angeles District, February 1992, Updated February 2000.
- Geobrugg (2003). "Design Concept, VX/UX Protection System Against Debris Flow." Fatzer AG, Geobrugg Protections Systems, Switzerland.

Keefe, P. (2007). Personal Communication. Via email, June 12, 2007.

Muraishi, H. and Sano, S. (1997). "Full Scale Rockfall Test of Ring Barrier and Components."

Mitzuyama, et al. (1992). "Prediction of Debris Flow Peak Discharge." *Interpraevent*, Bern, Switzerland, Bd. 4, 99-108.

Rickenmann, D. (1999). "Empirical Relationships for Debris Flows." Natural Hazards, 19(1), 47-77.

- Rickenmann, D. (2001). "Estimation of Debris Flow Impact on Flexible Wire Rope Barriers." Birmensdorf, interner Bericht, unver ffentlicht.
- PWRI (1988). "Technical Standard for Measures Against Debris Flows (Draft)." Ministry of Construction, Japan.

Roth, A. (2003). "VX/UX Protection System Against Debris Flow." Design Concept, Geobrugg Protection Systems, Romanshorn, Switzerland.

8. LIMITATIONS

Debris flow and rockfall are sporadic and unpredictable. Causes range from human construction to environmental (weather, earthquakes) effects. Because of the multiplicity of factors affecting rockfall dynamics, debris flow and rockfall are not, and cannot be, exact sciences that guarantee the safety of individuals and property. However, by the application of sound engineering principles to a predictable range of geodynamics, the risk of injury and property loss can be substantially reduced by the use of properly designed barriers in identified risk areas. Inspection and maintenance of barriers is necessary to insure that the desired protection level is not degraded by impact damage exceeding the design limits of a particular system or by corrosion from pollution or other man-made factors.

The analyses, conclusions and recommendations contained in this report are based on the site conditions observed by KANE GeoTech, Inc. personnel and derived from the information provided to KANE GeoTech, Inc. by others. If there is a substantial lapse of time between the submission of our report and the start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, we urge that our report be reviewed to determine the applicability of the conclusions and recommendations considering the changed conditions and time lapse. This report is applicable only for the project and site studied. This report should not be used after three years.

Our professional services were performed, our findings obtained, and our recommendations proposed in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. Findings and statements of professional opinion do not constitute a guarantee or warranty, expressed or implied.

William F. Kane, PhD, PG, PE California Licensed Civil Engineer No. 55714

APPENDIX A

DEBRIS FLOW CHUTE AND BARRIER LOCATION MAP

THIS PAGE INTENTIONALLY LEFT BLANK

Π

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

DEBRIS FLOW PROTECTION SYSTEM CALCULATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

1/2 GTOG-24 _ SANTA PAULA DEGRESTED 7-28-06 /WEK SAMPLE CALCULATION-DEBRIS FLOW CHNTE A · ROTH, A. (2003) "VX/UX PROTECTION SYSTEMS AGAINST DEBRIS FLOW." FATZER AG., GROBANGG PROTECTION SYSTEMS, ROMANSHORN, SWITZERLAND · ALBUS -KEEFE, INC (2006) PERSONAL COMMUNICATIONS SLOPE <= 21 " X= 120pct Timpert = 2.0 (GRANULAR) (FAST FRANNING) THICKNESS = 4 ++. FLOW WIDTH = 40 + 1 = 1.22 = = 12.16 BULKING FACTOR = O (DEWATERHAN BY BARRIEN) NET STORAGE = 30% · ESTIMATED VOLUME 970" (KGT CALEULATIONS) · PEAK DISCHARGE - GRANUCHE MATERIAL - COBBLES, E FC Q = 0,135 V 0.78 (FQNI) = (0,135) (970) 0.78 90 = 28.84 m3/s RANGE 5m3/s - 30m3/s OKV · VELOCITY V= 2.1 9.0.33 S 0.33 $V = (2.1)(28.84)^{0.33} [(21.)]^{0.33}$ V- 4.64 m/s RANGA 2m/s - 6 m/s OK · MASS

$$M_{d} = P_{d} Q_{p} T_{inp} \qquad (E \varphi_{N} 6)$$

= [(120)(16.02)](28.84)(2)
$$M_{d} = 110,884^{kg}$$

$$K_{E} = \frac{1}{2}M_{d}V^{2} \qquad (Eq_{W}7)$$

KANE GeoTech, Inc. P.O. Box 7526 Stockton, CA 95267-0526 Tel: 209-472-1822 Fax: 209-472-0802 Email: william.kane@kanegeotech.com

Debris Flow Calculations

Reference: Roth, A. (2003). "VX/UX Protection Systems Against Debris Flow." Fatzer, A.G., Geobrugg Protection Systems, Romanshorn, Switzerland

PROJECT NO. GT06-24 PROJECT NAME: Santa Paula Debris Flow Investigation

DESCRIPTION: Debris Flow Chute A

Input Parameters		Calculated Values	
Debris Flow Area	5,032 ft*2	Debris Flow Area	467 m^2
Thickness of Mobilized Material	3.0 ft	Thickness of Mobilized Material	0.91 m
Unit Weight (y)	120 pcf	Unit Weight	1,922 kg/m*3
Slope Angle	21 °	Slope Gradient (S)	0.38
Flow Width (b)	42 ft	Flow Width (b)	12.8 m
Bulking Factor	0%		
Deformed Net Capacity	30%		
Time of Impact (T_imp)	2.5 s		
Debris Flow Analysis			
Debris Flow Volume			
Volume	427 m^3	Range: 100-m*3 to 1,000-m*3	
Peak Discharge			
Granular Material	15.2 m*3/s	Range: 5 m^3/s to 30 m^3/s	
Fine-Grained Material	22.5 m*3/s	Range: 5 m^3/s to 30 m^3/s	
Velocity			
Velocity	3.76 m/s	Range: 2 m/s to 6 m/s	
Kinetic Energy			
Mass	73,152 kg		
Design Energy	517 KJ	192 ft-tons	
Design Height			
Design Height	3.1 m	10.2 ft	

KANE GeoTech, Inc. P.O. Box 7526 Stockton, CA 95267-0526 Tel: 209-472-1822 Fax: 209-472-0802 Email: william.kane@kanegeotech.com

Debris Flow Calculations

Reference: Roth, A. (2003). "VX/UX Protection Systems Against Debris Flow." Fatzer, A.G., Geobrugg Protection Systems, Romanshom, Switzerland

PROJECT NO. GT06-24 PROJECT NAME: Santa Paula Debris Flow Investigation

DESCRIPTION: Debris Flow Chute B

Input Parameters		Calculated Values	
Debris Flow Area	10,793 ft^2	Debris Flow Area	1003 m*2
Thickness of Mobilized Material	3.0 ft	Thickness of Mobilized Material	0.91 m
Unit Weight (y)	120 pcf	Unit Weight	1,922 kg/m*3
Slope Angle	18 °	Slope Gradient (S)	0.32
Flow Width (b)	82 ft	Flow Width (b)	25.0 m
Bulking Factor	0%		
Deformed Net Capacity	30%		
Time of Impact (T_imp)	2 s		
Debris Flow Analysis			
Debris Flow Volume			
Volume	917 m*3	Range: 100-m*3 to 1,000-m*3	
Peak Discharge			
Granular Material	27.6 m*3/s	Range: 5 m*3/s to 30 m*3/s	
Fine-Grained Material	41.2 m ^a 3/s	Range: 5 m*3/s to 30 m*3/s	
Velocity			
Velocity	4.33 m/s	Range: 2 m/s to 6 m/s	
Kinetic Energy			
Mass	106,123 kg		
Design Energy	995 KJ	369 ft-tons	
Design Height			
Design Height	3.0 m	10.0 ft	

KANE GeoTech, Inc. P.O. Box 7526 Stockton, CA 95267-0526 Tel: 209-472-1822 Fax: 209-472-0802 Email: william.kane@kanegeotech.com

Debris Flow Calculations

Reference: Roth, A. (2003). "VX/UX Protection Systems Against Debris Flow." Fatzer, A.G., Geobrugg Protection Systems, Romanshorn, Switzerland

PROJECT NO. GT06-24 PROJECT NAME: Santa Paula Debris Flow Investigation

DESCRIPTION: Debris Flow Chute C

Input Parameters		Calculated Values	
Debris Flow Area	5,705 ft^2	Debris Flow Area	530 m*2
Thickness of Mobilized Material	3.0 ft	Thickness of Mobilized Material	0.91 m
Unit Weight (y)	120 pcf	Unit Weight	1,922 kg/m*3
Slope Angle	30 °	Slope Gradient (S)	0.58
Flow Width (b)	35 ft	Flow Width (b)	10.7 m
Bulking Factor	0%		
Deformed Net Capacity	30%		
Time of Impact (T_imp)	2 s		
Debris Flow Analysis			
Volume	485 m*3	Range: 100-m*3 to 1,000-m*3	
Peak Discharge			
Granular Material	16.8 m*3/s	Range: 5 m^3/s to 30 m^3/s	
Fine-Grained Material	24.9 m*3/s	Range: 5 m*3/s to 30 m*3/s	
Velocity			
Velocity	4.44 m/s	Range: 2 m/s to 6 m/s	
Kinetic Energy			
Mass	64,541 kg		
Design Energy	637 KJ	236 ft-tons	
Design Height			
Design Height	4.2 m	13.8 ft	

APPENDIX E

ALBUS-KEEFE AND ASSOCIATES

Rough Grading Report for Phase 1 Construction Area Lots 26 through 35 and 44 through 50, Associated Streets and Slopes Tract 5606, Santa Paula, California October 23, 2007

7290.200.101 March 10, 2008 Revised May 23, 2008

ALBUS-KEEFE & ASSOCIATES, INC.

GEOTECHNICAL CONSULTANTS

October 23, 2007 J.N.: 1489.00

Ms. Tiffany Sukay Comstock Homes 321 12th Street, Suite 200 Manhattan Beach, California 90266

Subject: Rough Grading Report for Phase 1 Construction Area, Lots 26 through 35 and 44 through 50, Associated Streets and Slopes, Tract 5606, City of Santa Paula, California.

Dear Ms. Sukay:

We are pleased to present to you our report of rough grading services for the subject site. This report presents a summary of our geotechnical observation and testing services we provided during site rough grading operations for the subject lots as well as our conclusions and recommendations pertaining to future site development based on the as-graded site conditions.

We appreciate this opportunity to be of service to you. If you have any questions regarding the contents of this report, please do not hesitate to call.

Sincerely,

ALBUS-KEEFE & ASSOCIATES, INC.

atrick M. K.

Patrick M. Keefe Principal Engineering Geologist

TABLE OF CONTENTS

REPORT

1.0 INTRODUCTION	. 1
1.1 PURPOSE	. 1
1.2 PROJECT PLAN AND JURISDICTION	. 1
1.3 SCOPE OF SERVICES	. 1
2.0 SUMMARY OF ROUGH GRADING OPERATIONS	. 2
2.1 SITE PREPARATION	2
2.2 FILL PLACEMENT	2
2.3 LOT CAPPING	3
2.4 EAST BLUFF STABILIZATION	3
2.5 SEGMENTAL RETAINING WALLS	. 4
2.6 INCOMPLETE WORK	. 4
3.0 AS-GRADED GEOLOGIC CONDITIONS	. 4
3.1 GEOLOGIC OBSERVATIONS	. 4
3.2 GEOLOGIC UNITS	. 4
3.2.1 Non-Engineered Artificial Fill	. 4
3.2.2 Older Colluvium (Qcolo)	. 5
3.2.3 Terrace Deposits (Qt)	. 5
3.2.4 Bedrock – Saugus Formation (TQsa)	. 5
3.3 GEOLOGIC STRUCTURE	. 6
3.3.1 Bedding	. 6
3.3.2 Jointing	. 6
3.4 LANDSLIDES	. 6
3.5 GROUNDWATER	. 6
4.0 FIELD TESTING.	. 6
5.0 LABORATORY TESTING.	. 7
6.0 CONCLUSIONS	. 7
6.1 WORK COMPLIANCE	. 7
6.2 FUTURE SITE DEVELOPMENT	. 8
6.3 GEOLOGIC HAZARDS	. 8
6.3.1 Ground Rupture	. 8
6.3.2 Ground Shaking	. 8
6.3.3 Liquefaction	. 8
6.3.4 Landslides	. 8
6.3.5 Seiche and Tsunami	. 9
6.4 SETTLEMENT	. 9
6.5 GROUNDWATER	. 9
6.6 SLOPE STABILITY	. 9
6.7 SELECT MATERIALS FOR GEOGRID SLOPE AND SEGMENTAL WALLS	. 9
7.0 RECOMMENDATIONS	10
7.1 POST GRADING CONSIDERATIONS	10
7.1.1 Site Drainage	10
7.1.2 Irrigation Considerations	10

7.1.3 Utility Trench Backfill
7.1.4 Re-Certification of Pads
7.2 SEISMIC DESIGN PARAMETERS
7.3 SETTLEMENT CONSIDERATIONS
7.4 SOIL EXPANSION
7.5 POST-TENSIONED FOUNDATIONS
7.5.1 General
7.5.2 Allowable Bearing Value
7.5.3 Lateral Resistance 12
7.5.4 Foundation Setbacks
7.5.5 Beam Dimensions
7.5.6 Slab on Grade
7.6 FOOTING OBSERVATIONS 14
7.7 EXTERIOR FLATWORK
7.8 CORROSION POTENTIAL
7.9 SEGMENTAL RETAINING WALL LIMITATIONS
7.10 GEOGRID SLOPE LIMITATIONS
7.11 PLAN REVIEWS AND CONSTRUCTION SERVICES
3.0 CLOSURE
REFERENCES

APPENDICES

APPENDIX A - SUMMARY OF FIELD DENSITY TEST RESULTS Table A - Summary of Field Density Test Results

APPENDIX B - SUMMARY OF LABORATORY TEST RESULTS

Table B-1 - Maximum Dry Density and Optimum Moisture

Table B-2 – Sand Equivalence Tests

Table B-3 - Summary of Expansion, Atterberg Limits, Sulfate and Corrosion Testing

APPENDIX C - MAXIMUM DEPTH OF FILL BENEATH LEVEL PAD AREAS Table C-1 - Maximum Depth of Fill Beneath Level Pad Areas

MAP

PLATE 1 - Plot Plan (pocket enclosure)

1.0 INTRODUCTION

1.1 PURPOSE

This report presents a summary of geotechnical consulting services provided by *Albus-Keefe & Associates, Inc.* during rough grading of Lots 26 through 35 and 44 through 50, associated interior streets and slopes within Tract 5606. Conclusions and recommendations relative to future site development are also discussed herein. Rough grading under the purview of this report was accomplished from August 30, 2006, through September 28, 2007. The purpose of the rough grading was to create building pads for single-family residential development. The limits of rough grading performed under the purview of this report are shown on the enclosed Plot Plan, Plate 1.

Geotechnical consulting services provided by this firm during the completion of rough grading operations for Lots 37-40 (model lots) has been previously reported in the referenced report dated February 14, 2007. At the time of this report, continued rough grading operations are being performed in other areas of Tract 5606. As such, a summary of geotechnical consulting services for the balance of the site will be reported at a later date.

1.2 PROJECT PLAN AND JURISDICTION

The layout of Tract 5606 is shown on the plans entitled "Rough Grading Plan, Tract No. 5606, City of Santa Paula", prepared by Development Resource Consultants, Inc. Sheet 9 of these plans is used as the base map and enclosed herein as Plate 1(Plot Plan).

Rough grading operations summarized herein were performed under the jurisdiction of the City of Santa Paula, California.

1.3 SCOPE OF SERVICES

Albus-Keefe & Associates, Inc. has provided geotechnical consulting services as described below:

- Reviewed referenced geotechnical reports by this firm and others for the subject site and adjacent sites.
- Provided observation during clearing and grubbing operations.
- Provided observation during removal of unsuitable earth materials.
- Provided observation of fill keys and overexcavation bottoms.
- Provided observation during placement of subdrains and backdrains.

- Provided observation and field testing during scarification, moisture conditioning and recompaction of exposed earth materials within removal and overexcavation bottoms, and during fill placement within the site.
- Provided observation and field testing during fill slope construction and placement of geogrid.
- Provided observation and field testing during construction and backfill of segmental retaining walls.
- Provided laboratory testing of earth materials encountered during rough grading operations.
- Preparation of this report summarizing our observations, results of field and laboratory testing, and opinions and recommendations relative to future development of the site.

2.0 SUMMARY OF ROUGH GRADING OPERATIONS

Albus-Keefe & Associates, Inc. performed field observation and testing services during rough grading operations for the site. J&S Excavating, Inc., performed the rough grading summarized in this report except for soils and materials related to the segmental retaining walls and geogrid-reinforced slope. Construction of the segmental retaining walls and construction of the geogrid-reinforced 1:1 slope was performed by Soil Retention. Observations by our staff and discussions with the contractors indicate that the work was performed as discussed in the following sections.

2.1 SITE PREPARATION

The subject site was cleared of deleterious debris, trees, and other vegetation prior to rough grading operations. The deleterious materials were generally disposed of offsite.

Within the limits of rough grading, all existing non-engineered fill materials, topsoil, and the upper 5 to 7 feet of the older colluvial materials were removed to expose competent older colluvium and terrace deposits considered suitable for support of the proposed engineered fill, structures or related improvements. The approximate elevations of the removal bottoms are shown on the Plot Plan, Plate 1.

2.2 FILL PLACEMENT

Prior to placement of engineered fill materials, the exposed ground was scarified to a depth of approximately 6 inches, moisture conditioned to a relatively uniform moisture content near or slightly above optimum, and then compacted.

Following preparation of the exposed ground surface, fill was placed in lifts up to approximately 6 inches in thickness; moisture conditioned to a relatively uniform moisture content near or slightly above optimum, and then mechanically compacted. Mechanical compaction was achieved by using a rubber-tired dozer (Caterpillar 824/834) as well as by wheel rolling with loaded scrapers. Each lift

was placed in a similar manner. Fill materials were derived from removal and cut areas within the development and imported from an off-site source. Prior to placement of fill on surfaces inclined steeper than approximately 5:1 (h:v), near-vertical benches were cut into competent earth materials within the adjacent ascending terrain.

Rocks greater than 12 inches in maximum dimension were generated during the rough grading operations. The majority of oversize rocks were disposed of off site. However, a relatively minor amount of oversized rocks, less than 3 feet in maximum dimension, were scattered within the engineered fill materials at depths greater than 10 feet below finish grade and 10 feet horizontally from finished slope faces. The oversized rocks were mixed with granular materials and spread throughout the fill to eliminate nesting.

The approximate limits of compacted fill placed under the purview of this report are shown on the Plot Plan, Plate 1. The maximum depths of compacted fill placed within the level portions of the building pads are listed in Table C-1, Appendix C.

2.3 LOT CAPPING

All cut lots and the cut and shallow fill portions of cut-to-fill transition lots were overexcavated a minimum of 3 feet below the proposed pad grades and replaced with compacted fill. The overexcavation generally extended across the entire lot. Overexcavations were generally graded to slope at approximately 1 percent toward the adjacent street or deeper fill.

2.4 EAST BLUFF STABILIZATION

The reviewer for the city of Santa Paula requested that a complete exposure of the bedrock near the easterly bluff be made and mapped to substantiate our stability analysis in our supplemental geotechnical investigation report. Therefore, a temporary 1:1 backcut was created at the rear of Lots 21-25 and 28-30 to expose bedrock.

Following observations of the geologic conditions by this office and the city reviewer, a keyway was excavated in the bluff. The keyway has a width ranging from 25 to 35 feet and a depth of at least 2 feet into competent bedrock or terrace deposits. A backdrain was provided at the heel of the keyway in accordance with the recommendation of our referenced geotechnical investigation report.

The slope was reconstructed at a ratio of 1:1 with select granular sand fill material and geogrids in conformance with our recommendations previously approved by the city reviewer. Mirifi 10XT Geogrids were installed from the slope face and into the slope a horizontal distance approximately equal to the slope height. These geogrids were placed at pre-determined elevations based on our stability analysis previously reviewed and approved by the city reviewer. Mirifi 2XT geogrids were placed between the Mirifi 10XT geogrids every 2.5 feet vertically. Each geogrid was placed on the fill to provide an embedment of 8 feet into the slope with additional geogrid left at the slope face. Following placement of approximately 2.5 feet of fill, the additional geogrid was wrapped over the outer slope face and embedded into the slope face with a minimum of 3 feet.

In order to mitigate piping of granular soils through the geogrids, cohesive onsite soils were placed on the outer 2 to 4 feet of the slope face. In addition, Verdura wall blocks were utilized every 2.5 feet to aid in constructing the slope at a ratio of 1:1. Compaction on the outer edge was achieved with hand operated compaction equipment. Compaction within the inner select granular sand fill material was achieved with a steel-wheeled vibratory compactor.

2.5 SEGMENTAL RETAINING WALLS

Geogrid-reinforced segmental retaining walls were constructed during site grading along the eastern boundary of Lots 34 and 35 and along the southeastern boundary of Lots 30, 31, and 33 (Wall "B"). This firm provided full-time observation and testing during segmental wall construction. Our services consisted of observation of foundation excavations and backdrain systems for segmental retaining walls, observation of facing block placement, observation of geogrid installation, and observation and compaction testing of select wall backfill.

Drain pipe, consisting of 4-inch-diameter perforated P.V.C. schedule 40 or SDR 35 pipe, was placed within the drain rock of the segmental retaining wall. The drain pipe was placed as low as possible to provide outlet above adjacent grades. Drain pipes were set to drain at a minimum gradient of 1 percent toward outlets. Outlets were constructed of 4-inch-diameter solid P.V.C. pipe and were generally spaced to outlet every 100 feet.

2.6 INCOMPLETE WORK

At the time of preparing this report, a masonry retaining wall proposed at the rear of Lots 32 and 33 was not constructed. The wall will vary from 2 to 6 feet in height. At this location, a temporary slope has been constructed to provide support for the pads.

3.0 AS-GRADED GEOLOGIC CONDITIONS

3.1 GEOLOGIC OBSERVATIONS

Periodic geologic observations were made during rough grading to compare the anticipated and asgraded geologic conditions. The geologic conditions that were mapped are relatively similar to the anticipated conditions and are shown on the enclosed Plot Plan, Plate 1. A detailed description of the geologic units encountered within the limits of this report is discussed in the following section.

3.2 GEOLOGIC UNITS

3.2.1 Non-Engineered Artificial Fill

Non-engineered artificial fill associated with previous agricultural activities were present locally throughout much of the site. These fill material were typically damp to very moist, soft to stiff or medium dense to dense, and consisted of clayey silt, silty clay, silt, silty sand with clay, and sandy

silt with clay and locally contained rock fragments. Non-engineered artificial fill was completed removed during site grading.

3.2.2 Older Colluvium (Qcolo)

Older colluvium (previously referred to as the upper terrace deposits in our referenced report dated May 3, 2006) underlies the majority of the site under the purview of this report. The older colluvial materials consist primarily of silt, clayey silt, sandy silt, silty clay, and sandy clay that are various shades of brown. These deposits are typically damp to very moist and stiff to hard. The upper 5 to 7 feet of these materials was generally weathered and was removed during site grading to expose competent older colluvium.

3.2.3 Terrace Deposits (Qt)

Late Pleistocene-age stream terrace deposits (previously referred to by this firm as the lower portion of the terrace deposits) were mapped throughout the bluff top excavation. This unit consists of poorly- to locally-well-stratified gravels, cobbles, and boulders in a matrix of clayey sand, silty sand and sand. These materials were generally observed to be damp to moist and dense to very dense. The base of the terrace deposits is generally slightly inclined to the southeast. Some local scour features were noted at the base of the unit, particularly where the underlying bedrock unit is comprised of granular materials. These materials were exposed in the backcut created during the east bluff stabilization.

3.2.4 Bedrock – Saugus Formation (TQsa)

Plio-Pleistocene-age Saugas Formation underlies the entire project area. The Saugus Formation contains non-marine sediments that consist of massive to thickly-bedded clayey siltstone, sandy siltstone, silty sandstone, sandstone, and conglomerate interbeds, generally 1 foot to 6 feet in thickness and thin clay seams, typically ¹/₄ inch or less.

The bedrock units were observed to be light brown, reddish brown, pale olive-gray to olive-brown in color, soft to moderately hard, damp to moist, slightly to moderately weathered, and locally contain some calcium carbonate mineralization along joints.

Where observed, bedding within the Saugus Formation is massive to thinly bedded, but often indistinct with gradational contacts. Cross bedding and scour features were also observed.

A number of clay seams were noted to be tectonically sheared, polished and locally striated in the down dip direction. We attribute these features to flexural slip during rapid uplift and folding of the bedrock in the region. Bedrock materials were exposed in the backcut created during the east bluff stabilization.

3.3 GEOLOGIC STRUCTURE

3.3.1 Bedding

Bedding plane surfaces within the sandstone units are generally gradational to moderately well developed while bedding plane surfaces within the siltstone units are well developed and distinct where in contact with the sandstone. Bedding structure in the Saugus Formation is relatively uniform. The preponderance of the bedding attitudes observed throughout Tract 5606 strike N63°E $\pm 20^{\circ}$ and dip 48° $\pm 11^{\circ}$ to the southeast.

3.3.2 Jointing

The jointing observed on site was typically high angled, non-planar, discontinuous, tight, and lined with calcium carbonate and/or iron oxidation staining. Joint attitudes observed within the bedrock along the bluff top generally strike north to south and northwest to southeast with moderate to vertical dip angles, mainly dipping toward the east.

3.4 LANDSLIDES

No landslides were identified within or adjacent to the subject lots during the rough grading operations.

3.5 GROUNDWATER

Groundwater was not encountered within the limits of this report.

4.0 FIELD TESTING

The in-place density of fill materials was determined in accordance with ASTM D1556 (6-inch sand cone), ASTM D2937 (drive-cylinder), and ASTM D2922/D3017 (nuclear gauge). The results of field density tests were compared to the maximum density determined in accordance with ASTM D1557-02 to evaluate relative compaction. Where test results indicated a relative compaction less than 90%, the limit of the area of substandard fill was determined, the fill materials were then moisture conditioned, if needed, and recompacted until subsequent testing resulted in a relative compaction of 90% or greater. Field density tests were taken at a frequency of at least one test per 1000 cubic yards of fill placement or one test for every two vertical feet of fill placement, whichever occurred first. Surface density tests were taken upon achieving rough pad grade. The results of field density tests are presented in Appendix A, on Table A. As previously noted, rough grading operations within Lots 37-40 were performed concurrently with the rough grading operations for the balance of Tract 5606. As such, the test numbers on Table A are not in a sequential order. Only the tests conducted within the limits of time report are included on Table A. The approximate test locations are shown on the enclosed Plot Plan, Plate 1.

5.0 LABORATORY TESTING

Representative samples of the onsite soils were collected and tested in the laboratory during the rough grading operations. Laboratory tests included maximum dry density and optimum moisture content, sand equivalence (SE), direct shear, expansion index, soluble sulfate content, Atterberg Limits, and corrosion series. Descriptions of the laboratory tests are presented below. Pertinent test values are presented within Appendix B.

Maximum dry density and optimum moisture content tests were performed on selected samples in general conformance with ASTM D-1557-02. Pertinent test results are presented within Table B-1.

Sand equivalence tests were performed on selected samples obtained from the select granular soils used as backfill for the geogrid-reinforced slope and the segmental retaining wall. These tests were performed in accordance with California Test Method 217. Pertinent test results are presented within Table B-2.

Direct shear tests were performed on selected samples obtained from the select granular soils used as backfill for the segmental retaining wall. These tests were performed in accordance with ASTM D 3080-80. The samples were remolded to 90 percent of maximum dry density and 2 percentage points over optimum. Three specimens were prepared for each test, artificially saturated, and then sheared under varied loads at an appropriate constant rate of strain. Results are graphically presented on Plates B-1 through B-3.

Expansion Index tests were performed on representative earth materials encountered near finish pad grades during rough grading operations. Expansion Index testing was completed in accordance with Uniform Building Code (U.B.C.) Standard 18-2. Test results are presented in Appendix B, on Table B-3.

Soluble sulfate tests were performed on representative earth materials encountered near finish pad grades during rough grading operations. Soluble sulfate tests were completed in accordance with California Test Method No. 417. The test results are presented in Appendix B, on Table B-3.

Atterberg Limits were performed on a selected soil sample in accordance with ASTM D4318-93. Plastic Index value is presented on Table B-3.

Corrosion analyses, which include chloride content, minimum resistivity, and pH, were performed on a selected sample. The tests were performed in accordance with California Test Method (CTM) 422, CTM 643 and CTM 643, respectively. The test results are included in Table B-3.

6.0 CONCLUSIONS

6.1 WORK COMPLIANCE

Earthwork carried out under the observation and testing by *Albus-Keefe & Associates, Inc.* was performed in substantial conformance with the project plans and specifications, the grading codes of

the City of Santa Paula, and applicable portions of the project geotechnical requirements. *Albus-Keefe & Associates, Inc.* is not responsible for line and grade. Rough grading work for the site has been observed and tested in a manner consistent with the standard of care currently exercised by members of the profession practicing in the same general locality under similar conditions

6.2 FUTURE SITE DEVELOPMENT

From a geotechnical point of view, the rough graded configurations of the subject lots are considered suitable for future residential development as currently proposed, provided that the recommendations presented herein and in our referenced geotechnical reports are implemented during future grading and construction.

6.3 GEOLOGIC HAZARDS

6.3.1 Ground Rupture

No active faults are known to project through the site nor does the site lie within the bounds of an "Earthquake Fault Zone" as defined by the State of California in the Alquist-Priolo Earthquake Fault Zoning Act. No active or potentially active faults were observed during grading or during earlier geotechnical investigations within the limits of the subject lots. Therefore, the potential for ground rupture due to fault displacement beneath the site is considered low.

6.3.2 Ground Shaking

The site is located in a seismically active area that has historically been affected by moderate to occasionally high levels of ground motion. The site lies in close proximity to several active faults; therefore, during the life of the proposed development, the property will probably experience moderate to occasionally high ground shaking from these fault zones, as well as some background shaking from other seismically active areas of the southern California region. Structural designs should consider the potential for high ground accelerations as discussed in the referenced geotechnical reports as well as the requirements of the CBC presented in Section 7.2 herein.

6.3.3 Liquefaction

Based on the as-graded site conditions, the potential for liquefaction at the site is considered very small.

6.3.4 Landslides

No landslides were identified within or adjacent to the subject lots during the rough grading operations.

6.3.5 Seiche and Tsunami

The site is elevated more than 1000 feet above sea level and is located a substantial distance from significant body of water. As such, the potential for hazards related to seiche and tsunami is considered remove.

6.4 SETTLEMENT

Based on the anticipated relatively light foundation loads, total and differential settlement is not anticipated to exceed 1 inch and ½-inch over 30 feet, respectively. The estimated magnitudes of settlement are considered within tolerable limits for the proposed structures.

6.5 GROUNDWATER

Adverse effects from groundwater or seepage are not anticipated at the subject site provided that future surface water is controlled to limit excessive subsurface infiltration from irrigation or concentrated runoff.

6.6 SLOPE STABILITY

The fill slopes constructed to support the subject lots are considered grossly and surficially stable provided that the recommendations presented in this report are implemented and maintained at all times.

Natural slopes located beyond the limits of grading are considered grossly stable. These slopes are mantled with varying thicknesses of colluvial soils that may be prone to sloughing during periods of rain.

6.7 SELECT MATERIALS FOR GEOGRID SLOPE AND SEGMENTAL WALLS

Laboratory testing of select samples for backfill used in construction of the geogrid-reinforced slope and segmental walls indicate they substantially meet the project requirements. Results of direct shear tests indicate the ultimate friction angle of soils used in backfill of the segmental retaining walls ranged from 31 to 33 degrees thereby exceeding the design value of 30.5 degrees. Results of sand equivalence tests indicate the select materials used for both the segmental retaining wall and the geogrid slope ranged from 28 to 65 with an average value of 45. The target value specified by the city reviewer was 30. While one test result indicates a value slightly below the specified value, the average was significantly over the specified value. We conclude the select materials used are in substantial conformance with the project requirements and will perform as intended.

7.0 **RECOMMENDATIONS**

7.1 POST GRADING CONSIDERATIONS

7.1.1 Site Drainage

Positive drainage devices, such as sloping concrete flatwork, graded swales, and/or area drains, should be provided around the new construction to collect and direct all surface water to a suitable discharge area. No rain or excess water should be allowed to pond in yard areas or near structures including homes, retaining walls, or segmental walls.

7.1.2 Irrigation Considerations

Excessive irrigation water can be detrimental to the performance of proposed site development. Water applied in excess of the needs of vegetation will tend to percolate into the ground. Such percolation can lead to nuisance seepage and shallow perched groundwater. Seepage can form on slope faces, on the faces of retaining walls, in streets, or other low-lying areas. These conditions could lead to adverse effects such as the formation of stagnant water that breeds insects, distress or damage of trees, surface erosion, slope instability, discoloration and salt buildup on wall faces, and premature failure of pavement. Excessive watering can also lead to elevated vapor emissions within homes that can damage flooring finishes or lead to mold growth inside the home.

Key factors that can help mitigate the potential for adverse effects of over watering include the judicious use of water for irrigation, use of irrigation systems that are appropriate for the type of vegetation and geometric configuration of the planted area, the use of soil amendments to enhance moisture retention, use of low-water demand vegetation, regular use of appropriate fertilizers, and seasonal adjustments of irrigation systems to match vegetation needs for water. A landscape architect or other knowledgeable professional should provide specific recommendations. Future homebuyers should be made aware of these issues and consequences.

7.1.3 Utility Trench Backfill

Trench excavations may be cut vertically up to a height of 4 feet provided that no adverse geologic conditions or surcharging of the excavations are present. Trench excavations greater than 4 feet in height should be laid back at a maximum gradient of 1:1 (h:v). Excavations that expose loose granular soils prone to sloughing and caving should be laid back to a flatter gradient or where practical, hydraulic shoring with appropriate lagging may be utilized. The project geologist or soil engineer should observe all trench excavations to provide specific recommendations. All trench excavations should conform to the requirements of CAL OSHA.

All utility trench backfill should be compacted to at least 90 percent of the laboratory standard. Trench backfill should be brought to relatively uniform moisture content of 100 to 135 percent of optimum, placed in lifts no greater than 18 inches in thickness, and then mechanically compacted with appropriate equipment to at least 90 percent of the laboratory standard. The project geotechnical consultant should perform density testing, along with probing, to verify adequate compaction.

Within shallow trenches (less than 18 inches deep) where pipes may be damaged by heavy compaction equipment, imported clean sand having a Sand Equivalent of 30 or greater may be utilized. The sand should be placed in the trench, thoroughly watered, and then compacted with a vibratory compactor.

Where utility trenches are proposed parallel to any building footing (interior and/or exterior trenches), the bottom of the trench should not be located below a 1:1 (H:V) plane projecting downward from the outside edge of the adjacent footing base. For utility trenches located below a 1:1 (H:V) plane projecting downward from the outside edge of the adjacent footing base or crossing footing trenches, concrete or slurry should be used as trench backfill.

7.1.4 **Re-Certification of Pads**

Building pads will tend to become desiccated and weathered over time. If homes are not constructed on pads within approximately 6 months following completion of rough grading, the pads should be re-evaluated by the project geotechnical consultant to confirm they are still suitable for their intended use. Pads that become overly desiccated or eroded by rainfall may require some remedial earthwork to restore proper moisture and compaction near the surface prior to home construction.

7.2 SEISMIC DESIGN PARAMETERS

The closest known Type A active fault to the site is the San Andreas fault located approximately 52.0 km northeast of the site. The closest known Type B fault to the site is the onshore segment of the Oak Ridge fault located approximately 2.7 km west of the site. For design of the project in accordance with Chapter 16 of the 2001 CBC, seismic design factors are provided in Table 7.0.

Parameter	Value
Seismic Zone Factor, Z	0.4
Soil Profile Type, S	S _D
Near Source Factor, Na	1.2
Near Source Factor, Nv	1.5
Seismic Coefficient, Ca	0.54
Seismic Coefficient, Cv	0.96

TABLE 7.1

7.3 SETTLEMENT CONSIDERATIONS

Foundations should be designed to tolerate total and differential settlements of up to 1 inch and ¹/₂-inch over 30 feet, respectively.

7.4 SOIL EXPANSION

Testing of typical site soils within the subject lots were performed during recent rough grading operations. Laboratory test results for the subject lots indicate a Low expansion potential (CBC Table 18-1-B). Specific recommendations are provided in the following sections.

7.5 POST-TENSIONED FOUNDATIONS

7.5.1 General

The recommendations presented herein for foundations and slabs on grade are based on soils with a Medium expansion potential. Based on as-graded site conditions and results of laboratory testing conducted during rough grading operations, previous recommendations for foundation design and construction presented in the referenced reports remain applicable. For convenience, the recommendations are reiterated herein.

7.5.2 Allowable Bearing Value

A bearing value of 1,500 pounds per square foot may be used for continuous beams founded at a minimum depth of 12 inches below the lowest adjacent grade. The recommended allowable bearing value includes both dead and live loads, and may be increased by one-third for wind and seismic forces.

7.5.3 Lateral Resistance

A passive earth pressure of 250 pounds per square foot per foot of depth up to a maximum value of 1000 pounds per square foot may be used to determine lateral bearing for beams. A coefficient of friction of 0.30 times the dead load forces may also be used between concrete and the supporting soils to determine lateral sliding resistance. An increase of one-third of the above values may also be used when designing for wind and seismic forces.

The above values are based on beams placed directly against competent native soils or compacted fill. In the case where beam sides are formed, all backfill against the beams should be compacted to at least 90 percent of the laboratory standard.

7.5.4 Foundation Setbacks

At the rear of Lots 28-30, the upper 30 to 35 feet of the easterly bluff was removed and replaced with select granular soils reinforced with geogrids. This condition is anticipated to provide a more stable condition as well as reduce the potential magnitude of lateral fill extension (lateral movement of slopes due to expansive soils). In consideration of these improvements, the bottom outer edge of foundations for residential structures located adjacent a top of slope should be setback from the slope face a horizontal distance of at least 1/3 the height of the slope. The horizontal distance should not be less than 7 feet but need not exceed 20 feet.

The bottom outer edge of foundations located adjacent the top of segmental retaining walls should be setback from the wall such that the bottoms of footings are founded below a 1 to 1 (H:V) plane projected up from the base of segmental walls. The horizontal distance should not be less than 5 feet from the top of wall.

The above setbacks may be accomplished through the use of deepened footings or caissons below the foundation. If caissons are required, this office should provide specific recommendations.

7.5.5 Beam Dimensions

Perimeter edge beams for both one-story and two-story structures should be founded at a minimum depth of 15 inches below the lowest adjacent final ground surface. Interior beams may be founded at a minimum depth of 12 inches below the tops of the finish floor slabs.

7.5.6 Slab on Grade

The thickness of the floor slabs should be determined by the project structural engineer with consideration of the requirements of CBC 1816; however, we recommend a minimum slab thickness of 4.5 inches.

All dwelling area floor slabs constructed on-grade should be underlain with a moisture vapor barrier consisting of a polyvinyl chloride membrane such as 10-mil Visqueen or equivalent. A minimum of two (2) inches of clean sand having an SE of at least 30 should be placed over the membrane to promote uniform curing of the concrete. This vapor barrier system is anticipated to be suitable for most flooring finishes that can accommodate some vapor emissions. However, this system may emit more than 4 pounds of water per 1000 sq. ft. and therefore, may not be suitable for all flooring finishes. Additional steps should be taken if such vapor emission levels are too high for anticipated flooring finishes.

Pre-saturation of the subgrade below floor slabs will not be required; however, prior to placing concrete, the subgrade below all dwelling and garage floor slab areas should be thoroughly moistened to achieve a moisture content that is at least 110 percent over the optimum moisture content. This moisture content should penetrate to a minimum depth of 12 inches below the bottoms of the slabs.

Design in accordance with 2001 CBC Section 1816, may be based on the following parameters:

Parameter	Value
% Clay (portion passing No. 200 sieve)	50
Plastic Index	25
Plastic Limit	20
Clay Type	Montmorillonite
Depth to Constant Soil Suction (feet)	5
Constant Soil Suction (pF)	3.6
Velocity of Moisture Flow (in./mo.)	0.5
Subgrade Modulus (pci)	150

TABLE 7.2Post-Tensioned Design Parameters

Values for e_m may be estimated from Figure 18-III-14 of the CBC based on the selected Thornthwaite moisture index. Although the CBC indicates a Thornthwaite index of -20, consideration should be given to non-climatic factors such as irrigation practices that could affect the assumed value. Values for y_m may utilize Table 18-III based on the parameters provided in the table above and the estimated e_m . Using a Thornthwaite index of -20, the e_m and y_m values are summarized below:

Edge Lift Moisture Variation Distance, e _m	2.6 feet
Edge Lift, y _m	0.316 inches
Center Lift Moisture Variation Distance, em	5.3 feet
Center Lift, y _m	1.360 inches

7.6 FOOTING OBSERVATIONS

All footing trenches should be observed by the project geotechnical consultant to verify that they have been excavated into competent bearing soils and to the minimum embedments recommended herein. These observations should be performed prior to placement of forms or reinforcement. The excavations should be trimmed neat, level and square. All loose, sloughed or moisture-softened materials and debris should be removed prior to placing concrete.

7.7 EXTERIOR FLATWORK

Exterior flatwork should be a minimum 4 inches thick. Cold joints or saw cuts should be provided at least every 7 feet in each direction. Cold joints should be keyed or provided with dowels spaced 18 inches on center. Special jointing detail should be provided in areas of block-outs, notches, or other irregularities to avoid cracking at points of high stress. Subgrade soils below flatwork should be thoroughly moistened to a moisture content of at least 120 percent of optimum to a depth of 12 inches. Moistening should be accomplished by lightly spraying the area over a period of a few days just prior to pouring concrete.
The geotechnical consultant should observe and verify the density and moisture content of subgrade soils prior to pouring concrete to ensure that the required compaction and pre-moistening recommendations have been met.

Drainage from flatwork areas should be directed to local area drains and/or other appropriate collection devices designed to carry runoff water to the street or other approved drainage structures. The concrete flatwork should also be sloped at a minimum gradient of 2% away from building foundations and masonry walls.

7.8 CORROSION POTENTIAL

Laboratory testing for soluble sulfate content was completed on representative samples collected near rough grades. The test results indicate onsite soils contain less than 0.10% soluble sulfate. We recommend that the procedures provided in C.B.C. Section 1904.3 and Table 19-A-4, for concrete exposed to sulfate-containing solutions be followed for **Negligible** Sulfate Exposure.

Testing for chloride levels in site soils does not indicate a corrosive environment to metals. However, site soils do indicate a minimum resistivity less than 2000 ohm-cm. As such, site soils are corrosive to metals. Structures fabricated from metal should have appropriate corrosion protection if they will be in contact with site soils. Under such conditions, a corrosion specialist should provide specific recommendations.

7.9 SEGMENTAL RETAINING WALL LIMITATIONS

Segmental walls were constructed with geogrids to within as shallow as 2 feet of finish grade. The depths of the existing geogrids will allow for the installation of turf and typical yard planting such as shrubs and small trees. Planting of trees that require excavations greater than 2 feet in depth should be reviewed by this office prior to planting. No trees should be planted such that the ultimate drip lines of the mature tree will extend beyond the wall face. Root systems from trees placed in close proximity to the wall could cause deterioration and/or displacement of the geogrids and facing units.

Any improvements constructed above the geogrids or within a 1 to 1 plane projected up from the bottom of the walls may impact performance of the wall system. No yard improvements should be constructed within this zone without specific recommendations provided by this office or other geotechnical consultant familiar with segmental retaining walls. We recommend that future buyers of these properties be advised of these special conditions.

Proposed precise grading will provide positive drainage away from the segmental retaining walls and this condition <u>must</u> be maintained. Alteration of drainage in areas above the segmental walls could create conditions that are detrimental to the long-term performance of these walls. Future buyers of these properties should be advised of the critical nature of maintaining positive drainage away from these walls.

It is imperative that the existing geogrids placed during the wall construction be protected in place. Cutting or removal of the geogrids could create conditions that would be detrimental to the longterm performance of the walls. Future buyers of these properties should be advised of the critical nature of maintaining the integrity and position of the geogrids.

7.10 GEOGRID SLOPE LIMITATIONS

The slope at the rear of Lots 28 through 30 was constructed with geogrid reinforcement. Geogrids were placed as shallow as 2 feet from finish grade. The depths of the existing geogrids will allow for the installation of turf and typical yard planting such as shrubs and trees. However, no trees should be planted within 5 feet of the top of slope to avoid damaging shallow geogrids.

Any improvements constructed within 3 feet of the top of slope or deeper than 8 feet below grade anywhere within the rear yards may impact the geogrids. No yard improvements should be constructed within 3 feet of the top of slope or deeper than 8 feet without specific recommendations provided by this office or other geotechnical consultant familiar with geogrid-reinforced slopes. We recommend that future buyers of these properties be advised of these special conditions.

7.11 PLAN REVIEWS AND CONSTRUCTION SERVICES

We recommend *Albus-Keefe & Associates, Inc.*, be engaged to review the foundation plans prior to construction. This is to verify that the recommendations contained in this report have been properly interpreted and are incorporated into the project specifications. If we are not provided the opportunity to review these documents, we take no responsibility for misinterpretation of our recommendations.

We recommend that a geotechnical consultant be retained to provide soil engineering services during future post-grading construction of the project. These services are to observe compliance with the design, specifications or recommendations, and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

If the project plans change significantly, the project geotechnical consultant should review our original design recommendations and their applicability to the revised construction. If conditions are encountered during construction that appears to be different than those indicated in this report, the project geotechnical consultant should be notified immediately. Design and construction revisions may be required.

8.0 CLOSURE

This report has been prepared for the exclusive use of **Comstock Homes.** Professional judgments presented in this report are based on evaluations of the technical information gathered, on construction procedures reported by others, and on our general experience in the field of geotechnical engineering. Our engineering work and judgments rendered meet the standard of care of our profession at this time and locale. We do not guarantee or warranty the performance of the project in any respect.

This report should be reviewed and updated after a period of one year or if the site ownership or project concept changes from that described herein.

We hope that this report fulfills the current needs of the project. If you have any questions, or require additional information, please contact the undersigned.

Respectfully submitted,

ALBUS-KEEFE & ASSOCIATES, INC.

Michael Putt Project Geologist CEG 2341

Reviewed by:

Patrick M. Keefe Principal Engineering Geologist CEG 2022

David E. Albus **Principal Engineer**

REFERENCES

Geotechnical Reports

Due Diligence Geotechnical Investigation, 16.17 Acre Parcel, Santa Paul Memorial Hospital Property, City of Santa Paula, California, by Geolabs – Westlake Village, dated March 21, 2005.

Grading Plan Review, 16.17 Acre Parcel, Ridgeview at Vista Glen, Santa Paul Memorial Hospital Property, City of Santa Paula, California, by Geolabs – Westlake Village, dated August 10, 2005.

Supplemental Geotechnical Investigation and Rough Grading Plan Review, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated May 3, 2006 (J.N.: 1489.00).

Oversize Rock Placement Criteria, Tract 5606, Santa Paula, California, by Albus-Keefe & Associates, Inc., dated May 3, 2006 (J.N.: 1489.00).

Engineering Analyses for Segmental Retaining Walls, Ridgeview at Vista Glen, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated May 10, 2006 (J.N.: 1489.00).

Response to City of Santa Paula Review, dated May 23, 2006, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated June 28, 2006 (J.N.: 1489.00).

Second Response to City of Santa Paula Review, dated July 25, 2006, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated July 31, 2006 (J.N.: 1489.00).

Supplemental Engineering Analyses for Segmental Retaining Walls (Delta 1), Ridgeview at Vista Glen, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated August 10, 2006 (J.N.: 1489.00).

Supplemental Information No. 2, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated August 22, 2006 (J.N.: 1489.00).

Yielding of Backfill Materials for Segmental Retaining Walls, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated September 19, 2006 (J.N.: 1489.00).

Evaluation of Bulge in Segmental Wall B, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated November 2, 2006 (J.N.: 1489.00).

Rough Grading Report for Lots 37 through 40 (Model Lots), Tract 5606, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated February 14, 2007 (J.N.: 1489.00).

REFERENCES (cont.)

Modification of Building Setbacks, Lots 23 through 30, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated March 12, 2007 (J.N.: 1489.00).

Geotechnical Foundation Recommendations for Screen Walls at Lots 1 and 40, Ridgeview at Vista Glen, Western Terminus of 10th Street, City of Santa Paula, California a, by Albus-Keefe & Associates, Inc., dated June 28, 2007 (J.N.: 1489.00).

Geotechnical Evaluation of Debris Flow Chutes, Tract 5606, Proposed 75-Lot Residential Development, Western Terminus of 10th Street, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated July 9, 2007 (J.N.: 1489.00).

Clearing of Loose Soil Below Lots 21-25 and 28-30 Generated During Rough Grading, Tract No. 5606, City of Santa Paula, California, by Albus-Keefe & Associates, Inc., dated October 2, 2007 (J.N.: 1489.00).

<u>Plans</u>

Rough Grading Plan by Development Resource Consultants, Inc., Sheets 5 through 11 of 16, dated April 10, 2006, Scale: 1"=20'.

Segmental Retaining Wall Plans, Ridgeview at Vista Glen, City of Santa Paula, by Albus-Keefe & Associates, Inc., dated August 10, 2006.

APPENDIX A

SUMMARY OF FIELD DENSITY TEST RESULTS

ALBUS-KEEFE & ASSOCIATES, INC.

TABLE A

SUMMARY OF FIELD DENSITY TEST RESULTS

10-23-07 J.N.: 1489.00

Test	Test	Test	Loca	tion	Flev./	Moist.	Drv	Max. Drv	Ont.	Max.	Rel.	Ren.	Pass/
umber	Date	Type	(Northing)	(Easting)	Depth	Content	Density	Density	Moist.	Curve	Comp.	Comp.	Fail
		(*)	(Tract)	(Lot)	(ft.)	(%)	(pcf)	(pef)	(%)	No.	· (%)	(%)	(P/F)
13	08/31/06	N	11640	5375	604.0	11.5	113.1	122.0	12.5	В	93	06	Р
14	08/31/06	N	11750	5365	607.0	11.2	112.5	122.0	12.5	В	92	06	Р
15	08/31/06	z	11670	5290	608.0	12.5	111.3	122.0	12.5	В	91	06	P
16	08/31/06	N	11775	5345	610.0	12.8	111.7	122.0	12.5	B	92	06	Р
17	09/01/06	N	11685	5375	610.0	13.2	109.5	122.0	12.5	В	90	90	Ч
18	09/01/06	N	11780	5290	612.0	12.9	113.5	122.0	12.5	В	93	06	Р
20	09/01/06	N	11750	5340	612.0	12.6	112.7	122.0	12.5	B	92	06	Ь
21	09/01/06	N	11610	5307	606.0	14.4	111.0	122.0	12.5	В	91	90	Р
40	90/90/60	Z	11795	5295	614.0	15.3	112.7	122.0	12.0	В	92	06	Р
43	00/00/00	N	11500	5315	603.0	12.6	113.7	122.0	12.5	В	93	06	Ч
44	00/00/60	N	11570	5355	605.0	13.7	112.0	122.0	12.5	В	92	06	Ч
45	00/00/00	z	11515	5350	606.0	13.5	111.7	122.0	12.5	В	92	06	Ч
48	90/20/60	Z	11435	5340	600.0	16.4	111.2	122.0	12.5	В	91	06	Ч
53	09/08/06	Z	11445	5325	602.0	12.9	113.5	122.0	12.5	В	93	06	Ρ
67	09/14/06	z	11465	5165	607.0	15.8	109.3	131.0	9.0	D	83	06	ц
97 A	09/18/06	z	11465	5165	607.0	12.3	119.6	131.0	9.0	D	91	06	Ъ
98	09/14/06	z	11540	5160	607.0	14.7	111.7	131.0	9.0	D	85	06	ĹŦſ
98 A	09/18/06	z	11540	5160	607.0	10.9	121.2	131.0	9.0	D	93	60	Ч
115	09/18/06	Z	11455	5170	607.0	11.1	121.4	131.0	9.0	D	93	06	Ч
116	09/18/06	Z	11495	5165	608.0	12.4	121.4	131.0	9.0	D	93	90	Р
117	09/18/06	Z	11525	5165	608.0	11.5	121.5	131.0	9.0	D	93	60	Ч
118	09/18/06	N	11480	5165	608.0	11.0	121.5	131.0	9.0	Q	93	90	Р
119	09/18/06	Z	11615	5150	609.0	15.3	115.7	131.0	9.0	D	88	06	ц
119 A	09/19/06	N	11495	5165	609.0	10.1	125.3	131.0	12.5	D	96	06	Ч
142	09/20/06	D	11415	5385	604.0	9.1	122.3	131.0	9.0	D	93	90	Ч
154	09/22/06	N	11420	5330	604.0	12.9	110.5	122.0	12.5	В	91	60	Ч
159	09/25/06	D	11680	5150	610.0	13.5	110.8	122.0	12.5	В	91	90	Р
												•	

* See last page of this table for explanations.

ALBUS-KEEFE & ASSOCIATES, INC.

Homes
stock]
Com

TABLE A

10-23-07 J.N.: 1489.00

\mathcal{O}	
H	
Ξ	
5	
\mathbf{Z}	
2	
5	
ž	
Ε	
5	
H	
2	
5	
Ξ	
Ξ	
Ч	
Ξ	
Ξ	
j.	
H	
\circ	
\succ	
R	
_₹	
Σ	
Z	
Б	
$\overline{\mathbf{v}}$	

1	_																												
Pass	Fail	(P/F	Р	Р	Р	Р	Ρ	Ρ	Р	P	Ρ	Р	P	Ρ	P	Р	Ч	Р	P	Р	P	P	Ρ	Ρ	Ч	Ч	Ρ	F	Ч
Req.	Comp.	(%)	06	06	90	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	06	90	06	06	90	90	90	06	90
Rel.	Comp.	(%)	95	93	92	94	94	93	92	92	91	96	94	93	92	93	16	93	95	92	92	91	93	92	90	91	92	88	92
Max.	Curve	No.	В	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	В	В	В	В	В	В	В	В
Opt.	Moist.	(%)	12.5	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	0.6	9.0	9.0	9.0	0.6	9.0	0.6	9.0	9.0	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5
Max. Dry	Density	(pcf)	122.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	131.0	122.0	122.0	122.0	122.0	122.0	122.0	122.0	122.0
Dry	Density	(bcf)	116.2	122.1	120.2	123.1	122.8	121.9	120.7	120.5	119.7	126.2	123.4	121.2	120.1	121.3	119.5	122.2	124.9	120.0	120.7	110.6	113.0	111.7	109.5	111.1	111.7	106.9	112.1
Moist.	Content	(0/0)	12.5	10.2	10.5	9.6	9.0	9.8	9.3	8.4	9.6	9.1	10.3	8.1	7.7	7.5	9.0	9.2	9.5	10.9	8.4	13.9	12.9	12.6	14.2	13.7	12.9	12.9	11.9
Elev./	Depth	(ft.)	610.0	612.0	612.0	614.0	614.0	616.0	616.0	618.0	618.0	618.0	620.0	620.0	622.0	620.0	624.0	626.0	628.0	630.0	605.0	623.0	618.0	620.0	622.0	624.0	623.0	625.0	625.0
ion	(Easting)	(Lot)	5160	5150	5165	5160	5155	5135	5165	5150	5150	5140	5170	5160	5160	5130	5115	5115	5110	5100	5385	5125	5150	5140	5140	5135	5145	5125	5125
Locat	(Northing)	(Tract)	11515	11620	11510	11555	11585	11720	11455	11595	11645	11715	11450	11525	11485	11740	11775	11770	11780	11785	11400	11405	11605	11620	11590	11640	11630	11690	11690
Test	Type ((*)	Z	z	D	z	z	N	N	N	z	Z	z	z	N	N	z	N	z	Z	N	N	z	z	N	N	z	z	z
Test	Date		09/25/06	09/25/06	09/25/06	09/25/06	09/25/06	09/25/06	09/26/06	09/26/06	09/26/06	09/26/06	09/26/06	09/26/06	09/26/06	09/27/06	09/27/06	09/27/06	09/27/06	09/27/06	09/29/06	10/03/06	10/04/06	10/04/06	10/04/06	10/04/06	10/04/06	10/05/06	10/05/06
est	mber		160	161	162	163	164	165	166	167	168	169	170	171	172	173	175	176	177	178	188	197	202	203	204	205	206	207	207 A
L	ΠN		νw	VW	νw	νW	νw	νw	νw	ΛW	νw	ΛW	ΛW	ΛW	ΛW	νw	ΛW	νw	νw	νw	ΛW						FG		

* See last page of this table for explanations.

ALBUS-KEEFE & ASSOCIATES, INC.

TABLE SUMMARY OF FIELD DENSITY TEST RESULTS

Pass/ Fail (P/F)പ ٩ Ч പ പ പ പ (I., പ Ч Ч Ч Ч Ч ط പ Ч പ ſщ Ч Ч പ Д Д പ പ Comp. Req. (%) 88888888888888888888888888 90 8888888 Comp. Rel. (%) 91 95 93 92 94 92 87 90 92 93 93 <u>95</u> 93 94 92 88 94 92 2 6 93 94 91 Curve Max. No. B Щ B В Ю Ю Ю В mm BB В m m В m m Ю Щ Ю щ В В В mm Moist. 12.5 Opt. 12.5 12.5 12.5 12.5 12.5 12.5 (%) Max. Dry Density 122.0122.0122.0122.0122.0 122.0122.0 122.0 122.0 122.0122.0 122.0 122.0 <u>122.0</u> 122.0 122.0 122.0 122.0 122.0 $\frac{122.0}{122.0}$ 122.0 122.0 122.0122.0 122.0 (pet) Density 110.5 111.0 112.9 112.9 112.6 115.4 112.9 111.8 114.3 106.0112.4 116.0 113.5 112.5 109.8 113.2 112.2 115.7 107.2 109.5 110.3 112.0 111.0 114.7 Dry (bcf) 114.1 115.1 Content Moist. 14.0 12.612.612.8 14.6 15.3 14.5 13.9 13.415.6 12.9 13.6 11.9 12.6 13.5 15.3 14.7 15.2 14.3 15.3 14.5 15.0 12.5 13.7 13.7 (%) 15.1 Depth 626.0 627.0 630.0 Elev./ 626.0 627.0 628.0 630.0 631.0 633.0 633.0 634.0 635.0 636.0 637.0 638.0 646.0 647.0 603.0 605.0 605.0 605.0 607.0 608.0 610.0 612.0 617.0 (ft.) (Easting) 5115 5110 (Lot) 5145 5120 5100 5145 5150 5110 5135 5110 5135 5115 5105 5115 5105 5100 5230 5205 5115 5205 5260 5200 5200 5205 5205 5160 Location (Northing) 11550 11715 11725 11765 11530 11515 11710 11575 11510 11510 11470 11555 11715 11615 11610 11700 11520 11560 11560 11645 11655 (Tract) 11590 11700 11740 11790 11835 Type Test * Z Z Z Z Z Z Z Z Z Ζ z Z Z Ζ Z \mathbf{Z} Z S Z SZ $\boldsymbol{\mathcal{O}}$ Z $\boldsymbol{\mathcal{O}}$ \mathbf{v} $\boldsymbol{\mathcal{O}}$ 10/05/06 10/05/06 10/05/06 10/05/06 10/05/06 10/05/06 10/05/06 10/06/06 10/06/06 10/06/06 10/06/06 10/06/06 10/06/06 10/06/06 10/09/06 10/10/06 10/10/06 10/11/06 10/11/06 10/11/06 10/19/06 10/19/06 10/19/06 10/20/06 10/19/06 10/20/06 Test Date 219 A A 244 . Number 209 210 214 215 216 219 220 234 208 212 221 222 223 224 233 243 244 245 246 248 249 211 247 250 253 Test

See last page of this table for explanations.

ALBUS-KEEFE & ASSOCIATES, INC.

Page A-3

J.N.: 1489.00 10-23-07

д

12.5

122.0

112.6

13.2

604.0

5254

11468

Z

10/23/06

ŝ
- 65
ž
Ĥ
- 1
0

~~
5
_ <u>Y</u>
0
تب
0
- 5
0
-

TABLE A

10-23-07 J.N.: 1489.00

SUMMARY OF FIELD DENSITY TEST RESULTS

Test	Test	Test	Loca	tion	Elev./	Moist.	Dry	Max. Dry	Opt.	Max.	Rel.	Req.	Pass/
Number	Date	Type	(Northing)	(Easting)	Depth	Content	Density	Density	Moist.	Curve	Comp.	Comp.	Fail
		(*)	(Tract)	(Lot)	(ft.)	(%)	(pcf)	(pcf)	(%)	No.	(%)	(%)	(P/F)
254	10/23/06	z	11545	5225	604.0	14.0	114.2	122.0	12.5	В	94	06	q
255	10/23/06	N	11850	5115	625.0	14.1	113.2	122.0	12.5	В	93	90	Р
256	10/24/06	S	11590	5200	606.0	14.5	112.4	122.0	12.5	В	92	06	Р
257	10/24/06	z	11630	5220	608.0	15.2	112.0	122.0	12.5	В	92	06	Р
258	10/24/06	S	11675	5210	610.0	15.3	110.8	122.0	12.5	В	91	90	Р
259	10/25/06	z	11735	5185	612.0	14.3	116.1	122.0	12.5	В	95	90	Р
260	10/25/06	Z	11770	5180	614.0	14.8	114.8	122.0	12.5	B	94	90	Р
FS 275	10/27/06	Z	11570	5140	630.0	15.4	112.2	122.0	12.5	В	92	90	Ч
FS 276	10/27/06	Z	11660	5110	640.0	12.8	109.7	122.0	12.5	В	90	90	Р
FS 277	10/27/06	Z	11705	5120	630.0	13.3	112.5	122.0	12.5	В	92	90	P
317	12/20/06	N	11795	5185	616.0	15.1	113.8	122.0	12.5	В	93	90	Ρ
318	12/20/06	N	11820	5145	623.0	15.3	113.9	122.0	12.5	В	93	90	Р
323	12/20/06	N	11785	5160	618.0	13.1	110.5	122.0	12.5	В	91	90	Ρ
378	01/22/07	Z	11665	5520	575.0	15.6	114.4	122.0	12.5	В	94	90	Ч
379	01/22/07	Z	11665	5517	577.0	13.9	112.7	122.0	12.5	В	92	90	Р
380	01/22/07	z	11670	5515	579.0	14.7	113.0	122.0	12.5	В	93	90	Р
381	01/23/07	Z	11675	5515	581.0	14.0	116.2	122.0	12.5	В	95	60	P
382	01/23/07	Z	11705	5508	580.0	16.1	112.1	122.0	12.5	В	92	90	Р
383	01/23/07	Z	11735	5487	580.0	15.3	111.4	122.0	12.5	В	91	90	Р
384	01/23/07	Z	11765	5465	583.0	14.0	111.8	122.0	12.5	В	92	90	Ч
FG 406	01/25/07	Z	11425	5345	606.0	11.8	111.5	122.0	12.5	В	91	06	Р
FG 407	01/25/07	Z	11475	5340	606.3	14.5	112.1	122.0	12.5	В	92	60	Р
466	03/13/07	Z	11765	5520	585.0	10.3	119.5	131.0	9.5	D	16	06	Р
467	03/14/07	Z	11747	5468	586.0	9.7	123.5	131.0	9.5	D	94	06	Р
468	03/15/07	N	11782	5450	587.0	10.0	120.8	131.0	9.5	D	92	06	Р
469	03/16/07	Z	11735	5532	588.0	11.6	127.3	131.0	9.5	D	97	90	Р
470	03/19/07	z	11765	5495	587.0	10.9	122.2	131.0	9.5	D	93	06	Р

ALBUS-KEEFE & ASSOCIATES, INC.

* See last page of this table for explanations.

TABLE A

SUMMARY OF FIELD DENSITY TEST RESULTS

Test	Tact	Tact	Toool	tion	Flow /	Maist	Deri	May Dry	Ont	May	DAI	Dag	Duce/
ş	T CT		TUCA					114A. U.I.Y	- chr	-		- have	1900
5	Date	Type	(Northing)	(Easting)	Depth (ft.)	Content	Density	Density	Moist.	Curve	Comp.	Comp.	Fail
	03/20/07) z	11711	5538	590.0	11.0	120.0	131.0	9.5	D	92	06 06	b l
2	03/21/07	z	11778	5473	589.0	11.4	124.9	131.0	9.5	Ω	95	60	Р
3	03/22/07	z	11720	5520	592.0	10.2	121.3	131.0	9.5	D	93	96	Р
5	04/02/07	z	11770	5465	591.0	10.2	121.5	131.0	9.5	D	93	90	Р
9	04/02/07	N	11810	5405	593.0	10.5	121.4	131.0	9.5	D	93	90	Ρ
7	04/02/07.	Z	11695	5530	594.0	9.6	119.6	131.0	9.5	Q	91	90	Р
0	04/04/07	N	11760	5480	596.0	10.0	124.4	131.0	9.5	D	95	90	Р
1	04/04/07	z	11695	4595	596.0	11.4	127.4	131.0	9.5	D	67	06	Р
5	04/04/07	N	11750	5420	598.0	10.5	123.5	131.0	9.5	D	94	06	Ρ
3	04/05/07	Z	11716	5492	599.0	11.3	124.9	131.0	9.5	D	95	90	Р
6	04/09/07	Z	11650	5495	600.0	11.2	122.3	131.0	9.5	D	93	90	Р
0	04/09/07	N	11745	5492	601.0	10.6	125.0	131.0	9.5	D	95	90	Р
1	04/09/07	N	11845	5390	603.0	9.5	121.8	131.0	5.6	D	93	06	Ч
12	04/09/07	N	11630	5505	601.0	11.3	123.7	131.0	5.6	D	94	06	Ρ
9	04/10/07	Z	11595	5455	603.0	10.6	123.4	131.0	9.5	D	94	90	Ч
0	04/11/07	N	11768	5405	603.0	11.2	120.8	131.0	9.5	D	92	90	Ч
1	04/11/07	z	11560	5400	605.0	9.9	122.2	131.0	9.5	D	93	06	Ч
2	04/11/07	z	11580	5435	607.0	9.7	122.3	131.0	9.5	D	93	90	Ъ
8	04/13/07	N	11615	5480	609.0	9.6	123.3	131.0	9.5	D	94	60	Ь
6	04/13/07	z	11575	5420	611.0	9.2	121.0	131.0	9.5	D	92	60	Ч
0	04/13/07	z	11735	5431	605.0	9.1	123.7	131.0	9.5	D	94	60	Р
1	04/16/07	Z	11780	5415	607.0	10.7	122.3	131.0	9.5	D	93	90	Ч
2	04/16/07	Z	11815	5385	612.0	11.0	125.1	131.0	9.5	D	95	60	P
3	04/16/07	z	11850	5375	612.0	10.3	123.1	131.0	9.5	D	94	90	Ъ
0	04/25/07	z	11415	5215	606.0	9.2	127.4	131.0	9.5	D	97	60	Ρ
1	04/25/07	z	11415	5205	608.0	9.0	120.8	131.0	9.5	D	92	90	Р
2	04/25/07	s	11420	5195	610.0	9.5	122.6	131.0	9.5	D	94	06	P

* See last page of this table for explanations.

ALBUS-KEEFE & ASSOCIATES, INC.

Page A-5

10-23-07 J.N.: 1489.00

TABLE A

SUMMARY OF FIELD DENSITY TEST RESULTS

	Test	Test	Loca	tion	Elev./	Moist.	Dry	Max. Dry	Opt.	Max.	Rel.	Req.	Pass/
<u> </u>	Date	Type	(Northing)	(Easting)	Depth	Content	Density	Density	Moist.	Curve	Comp.	Comp.	Fail
		(*)	(Tract)	(Lot)	(ft.)	(%)	(pcf)	(bcl)	(%)	No.	(%)	(%)	(P/F)
04	l/25/07	z	11420	5190	612.0	10.9	123.5	131.0	9.5	D	94	06	Р
04	1/25/07	z	11425	5180	614.0	11.8	124.9	131.0	9.5	D	95	90	Р
04	/25/07	z	11435	5175	616.0	9.0	122.4	131.0	9.5	D	93	06	Р
04	1/25/07	z	11450	5170	618.0	9.1	122.2	131.0	9.5	D	93	90	P
04	1/26/07	z	11455	5165	620.0	9.6	120.0	131.0	9.5	D	92	90	Р
9	1/26/07	S	11460	5165	622.0	10.5	121.3	131.0	9.5	D	93	90	Р
12	1/26/07	z	11465	5160	624.0	10.6	123.5	131.0	9.5	D	94	60	Ρ
04	1/25/07	z	11730	5380	606.0	15.3	112.5	122.0	12.5	В	92	90	Р
9	/25/07	z	11675	5435	604.0	13.8	110.8	122.0	12.5	В	91	90	Р
8	1/25/07	z	11625	5445	606.0	14.5	109.5	122.0	12.5	B	90	90	Ρ
04	1/25/07	z	11595	5410	608.0	13.7	111.1	122.0	12.5	B	91	90	Р
04	/26/07	z	11660	5455	609.0	16.0	110.9	122.0	12.5	В	91	90	Ч
9	./26/07	z	11685	5490	610.0	15.3	111.7	122.0	12.5	B	92	90	Р
64	1/26/07	z	11615	5420	610.0	15.6	113.8	122.0	12.5	В	93	90	Р
6	1/26/07	N	11725	5405	609.0	14.7	115.8	122.0	12.5	В	95	90	Р
8	1/26/07	z	11725	5455	611.0	14.9	115.5	122.0	12.5	В	95	60	Р
8	1/30/07	z	11430	5285	601.0	13.8	111.9	122.0	12.5	B	92	90	Р
6	t/30/07	z	11555	5280	604.0	14.9	109.6	122.0	12.5	В	90	90	Р
6	1/30/07	z	11740	5270	608.0	15.2	112.9	122.0	12.5	В	93	90	Ρ
0	5/01/07	z	11645	5110	633.0	10.2	122.3	131.0	9.5	D	93	90	Ч
0	5/01/07	z	11640	5110	635.0	9.6	121.8	131.0	:6.5	D	93	90	Р
05	5/01/07	z	11640	5115	637.0	11.3	121.3	131.0	9.5	D	93	90	Р
02	5/01/07	Z	11635	5113	639.0	10.1	123.4	131.0	9.5	D	94	90	Р
050	5/01/07	N	11653	5110	641.0	14.9	117.5	122.0	12.5	В	96	90	Ρ
02	/10/02	z	11400	5160	610.0	10.1	121.4	131.0	9.0	D	93	06	Ρ
0	5/10/07	z	11405	5180	607.0	<i>L</i> .6	121.5	131.0	9.0	D	93	90	Ρ
0	5/11/07	Z	11400	5210	608.0	14.9	111.1	122.0	12.5	В	16	90	Ρ

10-23-07 J.N.: 1489.00

* See last page of this table for explanations.

ALBUS-KEEFE & ASSOCIATES, INC.

i.

TABLE A

10-23-07 J.N.: 1489.00

SUMMARY OF FIELD DENSITY TEST RESULTS

				_								_	_	_		-	_	_	_	_	_	_	-	_	_	_	_
Pass/	Fail	(P/F)	Ρ	Ρ	Р	Р	Ρ	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ч	Ρ	Ρ	Ρ	Р	Ч	Ρ	Ρ	ď	Р	Р	Ρ	Ч
Req.	Comp.	(%)	90	90	90	90	90	90	90	90	60	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
Rel.	Comp.	(%)	92	93	94	93	94	94	95	94	90	95	94	93	92	92	94	92	92	93	93	91	91	90	94	91	91
Max.	Curve	No.	В	В	В	В	В	В	В	В	В	В	В	D	В	D	D	В	В	D	D	D	D	В	В	В	В
Opt.	Moist.	(%)	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	9.0	12.5	9.0	9.0	12.5	12.5	9.0	9.0	9.0	9.0	12.5	12.5	12.5	12.5
Max. Dry	Density	(pcf)	122.0	122.0	122.0	122.0	122.0	122.0	122.0	122.0	122.0	122.0	122.0	131.0	122.0	131.0	131.0	122.0	122.0	131.0	131.0	131.0	131.0	122.0	122.0	122.0	122.0
Dry	Density	(jocf)	111.8	113.8	114.6	113.6	114.5	114.2	116.2	114.1	110.1	115.5	114.3	121.8	111.8	120.5	123.1	112.3	112.7	121.3	121.4	119.1	119.5	110.1	114.4	110.5	110.7
Moist.	Content	(%)	12.9	13.7	13.5	13.0	14.6	13.8	12.7	12.7	13.3	12.4	12.2	12.7	15.1	11.9	12.2	14.6	16.0	10.8	11.7	10.6	10.0	11.8	12.2	10.3	10.2
Elev./	Depth	(ft.)	611.0	612.5	611.0	611.8	612.0	606.2	606.8	607.3	608.0	609.1	610.5	612.0	613.0	615.0	617.0	619.0	614.0	602.0	604.0	606.0	608.0	608.0	609.0	611.0	611.0
tion	(Easting)	(Lot)	5330	5315	5400	5450	5475	5230	5215	5200	5220	5200	5205	5210	5180	5212	5170	5150	5320	5385	5370	5375	5390	5384	5388	5383	5385
Local	(Northing)	(Tract)	11705	11745	11725	11705	11660	11460	11520	11550	11600	11645	11685	11715	11710	11763	11755	11750	11775	11550	11510	11540	11555	11612	11788	11797	11765
Test	Type	(*)	z	Z	z	z	z	z	z	z	z	z	z	z	z	s	z	z	z	s	z	z	z	z	z	z	z
Test	Date		06/14/07	06/14/07	06/14/07	06/14/07	06/14/07	06/14/07	06/14/07	06/14/07	06/14/07	06/14/07	06/14/07	08/13/07	08/13/07	08/13/07	08/14/07	08/14/07	08/20/07	09/11/07	09/11/07	09/11/02	09/12/07	09/28/07	09/28/07	09/28/07	09/28/07
Test	umber		654	655	656	657	658	659	660	661	662	663	664	695	696	697	698	669	709	717	718	719	720	729	730	731	732
	ž		FG	RW	RW	RW	RW	RW	RW	ΛW	M	MN	ΜΛ														

* See last page of this table for explanations.

ALBUS-KEEFE & ASSOCIATES, INC.

732

◄ TABLE

EXPLANATION OF TEST CODES

PREFIX CODE DESIGNATION FOR TEST NUMBERS

ET-	Exploratory Trench	SG-	Segmental Wall	-WV	Vedura
FG-	Finish Grade	SR-	Slope Repair		
OG-	Original Ground	RG-	Rough Grade		
SF-	Slope Face	RW-	Retaining Wall		

Wall

CODES FOLLOWING THE TEST NUMBER

- Subsequent retest of failed density test after fill reconditioning and recompaction. A:
 - Failed material removed. К:

TEST TYPE

- Drive-Cylinder Test per ASTM D2937 ü s ü
 - Sand Cone Test per ASTM D1556
- Nuclear Gauge Test per ASTM D2922 and D3017

MAX. CURVE NO.

Corresponds to Max Curve Designation listed in Table B-1 (represents the laboratory maximum dry density/optimum moisture content for a representative fill material encountered during grading). B, D:

APPENDIX B

SUMMARY OF LABORATORY TEST RESULTS

ALBUS-KEEFE & ASSOCIATES, INC.

Max. Curve No.	Description	Max. Dry Density (pcf)	Optimum Moisture (%)
В	Reddish-Brown Sandy Silt with Clay (ML)	122.0	12.5
D	Import - Yellowish-Brown Sand (SP)	131.0	9.0

TABLE B-1 Maximum Dry Density & Optimum Moisture

TABLE B-2Sand Equivalence Tests

Sample No.	Description	SE
4	Import-Slightly Silty Sand (SM-SP)	35
5	Import – Well Grade Sand (SW)	65
6	Import – Well Grade Sand (SW)	53
7	Import- Silty Sand (SM-SP)	28

_

	Test Results							
Building Pads	Expansion Index	Expansion Potential	Plasticity Index	Soluble Sulfate Content	Sulfate Exposure	Minimum Resistivity (ohm-cm)	Hq	Chloride Content (ppm)
26-29	33	Low	_	0.002%	Negligible	-	-	-
30-34	47	Low	16.7	0.002%	Negligible	-	-	-
35	35	Low	14.0	0.015%	Negligible	1,100	7.6	280
44-50	46	Low	-	0.004%	Negligible	-	-	-

 TABLE B-3

 Summary of Expansion, Atterberg Limits, Sulfate and Corrosion Testing

APPENDIX C

MAXIMUM DEPTH OF FILL BENEATH LEVEL PAD AREAS

ALBUS-KEEFE & ASSOCIATES, INC.

Lot Number	Depth of Fill (ft)	Lot Number	Depth of Fill (ft)
26	8	35	8
27	7	44	5
28	27	45	5
29	38	46	5
30	41	47	6
31	13	48	5
32	7	49	5
33	8	50	8
34	8		

Table C-1Maximum Depth of Fill Beneath Level Pad Areas

APPENDIX F

CONTECH CONSTRUCTION PRODUCTS, INC.

Detention System Maintenance Guide

7290.200.101 March 10, 2008 Revised May 23, 2008

MAINTENANCE

Underground storm water detention and retention systems should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size or configuration of the system.

Inspection

Inspection is the key to effective maintenance and is easily performed. CONTECH recommends ongoing quarterly inspections of the accumulated sediment. Sediment deposition and transport may vary from year to year and quarterly inspections will help insure that systems are cleaned out at the appropriate time. Inspections should be performed more often in the winter months in climates where sanding operations may lead to rapid accumulations, or in equipment washdown areas. It is very useful to keep a record of each inspection. A sample inspection log is included for your use.

Systems should be cleaned when inspection reveals that accumulated sediment or trash is clogging the discharge orifice. CONTECH suggests that all systems be designed with an access/inspection manhole situated at or near the inlet and the outlet orifice. Should it be necessary to get inside the system to perform maintenance activities, all appropriate precautions regarding confined space entry and OSHA regulations should be followed.

<u>Cleaning</u>

Maintaining an underground detention or retention system is easiest when there is no flow entering the system. For this reason, it is a good idea to schedule the cleanout during dry weather.

Accumulated sediment and trash can typically be evacuated through the manhole over the outlet orifice. If maintenance is not performed as recommended, sediment and trash may accumulate in front of the outlet orifice. Manhole covers should be securely seated following cleaning activities.

INSPECTION & MAINTENANCE LOG

" Diameter System			Location: Anywhere, USA			
Date	Depth of Sediment	Accumulated Trash	Maintenance Performed	Maintenance Personnel	Comments	
12/01/99	2″	None	Removed Sediment	B. Johnson	Installed	
03/01/00	1″	Some	Removed Sediment and Trash	B. Johnson	Swept parking lot	
06/01/00	O″	None	None			
09/01/00	O″	Heavy	Removed Trash	S. Riley		
12/01/00	1 ″	None	Removed Sediment	S. Riley		
4/01/01	O″	None	None	S. Riley		
04/15/01	2″	Some	Removed Sediment and Trash	ACE Environmental Services		
		<u>SAM</u>	PLE			
		· ·	·			